Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Research Could Stop Tumour Cells from Spreading

Published: Thursday, March 29, 2012
Last Updated: Thursday, March 29, 2012
Bookmark and Share
Researchers from the Department of Chemistry and Molecular Biology at the University of Gothenburg have managed for the first time to obtain detailed information about the role of the protein metastasin in the spread of tumour cells.

Published recently in the renowned Proceedings of the National Academy of Sciences (PNAS), the study paves the way for the development of new drugs.

Metastasin is a protein with a key role in the spread of tumour cells.Previous research has shown that it is activated through the binding of calcium ions and then binds to and modulates other proteins.

Increases the spread of tumour cells

One of metastasin’s binding partners is a motor protein called non-muscle myosin. Motor proteins are the driving force behind cell mobility. By binding to this protein, metastasin can increase the spread of tumour cells, acting as a kind of gas pedal for the cancer engine.

- Using a method called X-ray crystallography, we have managed for the first time to obtain detailed information on how metastasin binds to a motor protein, a process that facilitates the spread of tumour cells, explains researcher Gergely Katona.

Detailed picture

It has been possible to image metastasin and calcium-ion-bound metastasin using X-ray crystallography before, but the researchers at the University of Gothenburg are the first to have imaged the structure of calcium-ion-activated metastasin with an attached non-muscle myosin fragment.

- This has given us information about regions of both metastasin and the motor protein that are crucial for metastasin’s ability to bind to the motor protein. This is important to know for drugs to be developed that block these specific regions and so prevent this binding.

The image of the two molecules gives us a better understanding of how metastasin binds to the motor protein, so increasing cell mobility and the spread of tumour cells. This understanding in turn paves the way for the development of new drugs to prevent this harmful interaction between molecules and so stop tumour cells from spreading.

- The metastasin and the motor protein can be imaged as a snapshot, but the next stage is to create a kind of video to see how the molecules move when binding to one another, explains Katona.

Gergely Katona is a researcher at the Department of Chemistry and Molecular Biology at the University of Gothenburg.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
Tuesday, October 13, 2015
Scientific News
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos