Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

University of Birmingham Invests £2 Million in Environmental Genomics Program

Published: Thursday, July 19, 2012
Last Updated: Thursday, July 26, 2012
Bookmark and Share
The research initiative aims to build genomics and bioinformatics expertise for the emerging field of environmental genomics.

Environmental genomics uses high-throughput DNA technologies and the analysis of high-dimensional data to link gene functions and interactions to the fate of natural populations coping with environmental challenges, including global climate change. This new research initiative builds upon the School’s expertise in cellular, genetic and metabolomic toxicology to understand how organisms respond to environmental stress, particularly from pollution.

There are currently over 80,000 chemicals used by manufacturers of consumer goods that are released into the environment, yet only around 7% have ever been tested for their potential health effects to humans and ecosystems, even in rudimentary ways. As more products are introduced to markets every year, there is now great demand by regulatory authorities and industries for new technologies to quickly, cheaply and effectively measure the possible toxicities of these chemicals.

‘Government agencies on both sides of the Atlantic agree that high-throughput genomics are expected to be the basis for environmental and human health protection and remediation by 2015, thus creating a global demand for these skills and technologies’, said Professor Malcolm Press, Pro-Vice-Chancellor and Head of the College of Life and Environmental Sciences at the University of Birmingham.

To jump-start this effort, the University is investing in positions to appoint, post-doctoral fellowships, technicians, doctoral student training and by building impressive genomics, metabolomics, computing and laboratory facilities. The initiative is under the direction of Professor John Colbourne, who has been recruited from Indiana University, Bloomington, USA. Colbourne was genomics director of the Center for Genomics and Bioinformatics, the lead institution to describe the genome sequence of a tiny crustacean called Daphnia. For many decades, Daphnia serves as the primary aquatic invertebrate test-organism by environmental protection agencies around the world. Because of Colbourne’s work in conjunction with the Daphnia Genomics Consortium (DGC), the US National Institutes of Health now includes this species within its selective list of model organisms for biomedical research, yet here with special emphasis on understanding how genes and environments interact to determine disease susceptibility.

Daphnia measures 3-6 mm, is particularly sensitive to chemicals, is a keystone species of freshwater food chains, has a remarkable range of adaptive responses to ecological conditions, and shares the most number of genes with humans from among the other invertebrate model species.

‘I am excited by this opportunity to help assemble a unique research group that studies genomics to improve the environment. This investment will help catalyze international cooperation and provide a training ground for early career scientists in the field’, said Colbourne. ‘The University of Birmingham is a natural home for this type of multidisciplinary research,’ he adds. The UK represents half of the European laboratories participating in the DGC, which is open to researchers from around the world wanting to collaborate by sharing resources and expertise.

While at Indiana University, Colbourne has forged strong ties with corporations that share the vision of modernizing environmental risk assessment. These industry-academic collaborations are also providing training on the uses of technologies for the field, including at an annual Environmental Genomics summer course at the Mount Desert Island Biological Laboratory, in Maine, where Colbourne holds an adjunct teaching position.

‘Imagine a new cohort of trained scientists working in academia, government or for industry who can reliably forecast potential environmental problems from the biochemical responses of selected animals to stress, long before actual harm is realized’, asks Mark Viant, Professor of Metabolomics at the University of Birmingham and member of the DGC. ‘This technology can be a key to help industries manufacture greener products and better manage their environmental and investment risks.’

The plan for financing the initiative’s growth is to leverage this University’s initial investment with government research grants and contributions from industry, private foundations and donors.

‘The economic rewards from the expanding applications of science that is born of basic genomics research are obvious,’ said Colbourne, ‘yet the infrastructure and jobs needed to support a large-scale genomics testing and bioinformatics research facility will require investors from all sectors, who are concerned by the increasing demands that humans place on essential ecosystem services, including our need for clean water.’


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Evidence of How Incurable Cancer Develops
Researchers in the West Midlands have made a breakthrough in explaining how an incurable type of blood cancer develops from an often symptomless prior blood disorder.
Tuesday, October 20, 2015
BGI, University of Birmingham Create UK Environmental Omics Centre
The Centre will seek to protect environment, health and global biodiversity by analysing the toxicity of compounds more efficiently than has been achieved before.
Tuesday, July 08, 2014
Scientists Discover way to fix Drugs with DNA
This is thought to be a crucial step forward for researchers who are developing drugs to combat cancer and other diseases.
Wednesday, February 08, 2006
Scientific News
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Genetic Cause of Rare Allergy
Institute has identified a genetic mutation responsible for a rare form of inherited hives induced by vibratory urticaria.
Mitochondria Shown to Trigger Cell Ageing
An international team of scientists has for the first time shown that mitochondria, the batteries of the cells, are essential for ageing.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Validating the Accuracy of CRISPR-Cas9
IBS Researchers create multiplex Digenome-seq to find errors in CRISPR-Cas9 processes.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!