Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Links Offer Picture of Biology Underlying Diabetes

Published: Tuesday, August 14, 2012
Last Updated: Tuesday, August 14, 2012
Bookmark and Share
Findings are published in the journal Nature Genetics.

Ten more DNA regions linked to type 2 diabetes have been discovered by an international team of researchers, bringing the total to over 60.

The study provides a fuller picture of the genetics and biological processes underlying type 2 diabetes, with some clear patterns emerging.

The international team, led by researchers from the University of Oxford, the Broad Institute of Harvard and MIT, and the University of Michigan, Ann Arbor, used a new DNA chip to probe deeper into the genetic variations that commonly occur in our DNA and which may have some connection to type 2 diabetes.

'The ten gene regions we have shown to be associated with type 2 diabetes are taking us nearer a biological understanding of the disease,' says principal investigator Professor Mark McCarthy of the Wellcome Trust Centre for Human Genetics at the University of Oxford.

Professor McCarthy continued, 'It is hard to come up with new drugs for diabetes without first having an understanding of which biological processes in the body to target. This work is taking us closer to that goal.'

Approximately 2.9 million people are affected by diabetes in the UK, and there are thought to be perhaps a further 850,000 people with undiagnosed diabetes.

Left untreated, diabetes can cause many different health problems including heart disease, stroke, nerve damage and blindness. Even a mildly raised glucose level can have damaging effects in the long term.

Type 2 diabetes is by far the most common form of the disease. In the UK, about 90% of all adults with diabetes have type 2 diabetes.

It occurs when the body does not produce enough insulin to control the level of glucose in the blood, and when the body no longer reacts effectively to the insulin that is produced.

The researchers analyzed DNA from almost 35,000 people with type 2 diabetes and approximately 115,000 people without, identifying 10 new gene regions where DNA changes could be reliably linked to risk of the disease.

Two of these showed different effects in men and women, one linked to greater diabetes risk in men and the other in women.

With over 60 genes and gene regions now linked to type 2 diabetes, the researchers were able to find patterns in the types of genes implicated in the disease.

Although each individual gene variant has only a small influence on people’s overall risk of diabetes, the types of genes involved are giving new insight into the biology behind diabetes.

Professor Mark McCarthy says: 'By looking at all 60 or so gene regions together we can look for signatures of the type of genes that influence the risk of type 2 diabetes.

'We see genes involved in controlling the process of cell growth, division and ageing, particularly those that are active in the pancreas where insulin is produced. We see genes involved in pathways through which the body's fat cells can influence biological processes elsewhere in the body. And we see a set of transcription factor genes - genes that help control what other genes are active.'

While gene association studies have been successful in finding DNA regions that can be reliably linked to type 2 diabetes, it can be hard to tie down which gene and what exact DNA change is responsible.

Professor McCarthy and colleagues' next step is to get complete information about genetic changes driving type 2 diabetes by sequencing people's DNA in full.

He is currently leading a study from Oxford University that, with collaborators in the US and Europe, has sequenced the entire genomes of 1,400 people with diabetes and 1,400 people without. First results will be available next year.

'Now we have the ability to do a complete job, capturing all genetic variation linked to type 2 diabetes,' says Professor McCarthy, a Wellcome Trust Senior Investigator. 'Not only will we be able to look for signals we’ve so far missed, but we will also be able to pinpoint which individual DNA change is responsible. These genome sequencing studies will really help us push forward towards a more complete biological understanding of diabetes.'


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Type 2 Diabetes Genetics Revealed
The largest study of its kind into type 2 diabetes has produced the most detailed picture to date of the genetics underlying the condition.
Wednesday, July 13, 2016
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
Friday, June 17, 2016
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Friday, May 27, 2016
Origin of a Species
A study by researchers at the Wellcome Trust Centre for Human Genetics at Oxford University has uncovered the key role played by a single gene in how groups of animals diverge to form new species.
Monday, February 15, 2016
Identifying Drug Resistance Traits
Scientists have developed an easy-to-use computer program that can quickly analyse bacterial DNA from a patient's infection and predict which antibiotics will work, and which will fail due to drug resistance.
Tuesday, December 22, 2015
Faster, Cheaper TB Diagnosis
Whole Genome Sequencing is a faster, cheaper and more effective way of diagnosing tuberculosis says a new study.
Wednesday, December 09, 2015
Why we Still Don’t Have Personalised Medicine
15 years after sequencing the human genome we still do not have the promised personalised medicine, why is this?
Friday, December 04, 2015
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Tuesday, November 24, 2015
Mini DNA Sequencer’s Data Belies its Size
A miniature DNA sequencing device that plugs into a laptop and was developed by Oxford Nanopore has been tested by an open, international consortium, including Oxford University researchers.
Tuesday, October 20, 2015
New Insight into Recombination and Sex Chromosomes
Not only does the platypus have some odd physical features, an updated version of its genome has also underscored the unusual genetic characteristics that it harbors.
Tuesday, May 12, 2015
Protein Clue To Sudden Cardiac Death
A protein has been shown to have a surprising role in regulating the 'glue' that holds heart cells together, a finding that may explain how a gene defect could cause sudden cardiac death.
Tuesday, February 17, 2015
Investment In Cancer Research At Oxford University
Centre for Molecular Medicine to focus on cancer genomics and molecular diagnostics, through a partnership with the Chan Soon-Shiong Institute.
Friday, October 24, 2014
Genetic Tracking Identifies Cancer Stem Cells in Patients
The gene mutations driving cancer have been tracked for the first time in patients back to a distinct set of cells at the root of cancer – cancer stem cells.
Friday, May 16, 2014
Eating Organic Food Doesn't Lower Overall Cancer Risk
Women who always or mostly eat organic foods have the same likelihood of developing cancer as women who eat conventionally produced foods.
Tuesday, April 01, 2014
New Trial of Personalized Cancer Treatment Begins in Oxford
Phase I trial in Oxford will investigate a new drug, called CXD101.
Tuesday, March 18, 2014
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Deciphering Inactive X Chromosomes
Untangling the Barr body of inactive X chromosomes valuable for understanding chromosome structure and gene expression.
Micro Disease-Detecting Senor Created
Researchers at McMaster University have created a microscopic disease-detecting sensor that can turn on to detect trace amounts of substances.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Understanding Treatment Resistant Melanoma
Researchers have determined how advanced melanoma becomes resistant; a development toward developing treatments.
Investigating ‘Black Box’ of Human Genetics
Investigations into inactive X chromosomes have shown unusual DNA repeat elements are essential for maintaining 3D structure.
Liquid Biopsies: DNA Size Matters
Study finds circulating tumour DNA can be distinguished from healthy DNA through fragment size identification.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!