Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Links Offer Picture of Biology Underlying Diabetes

Published: Tuesday, August 14, 2012
Last Updated: Tuesday, August 14, 2012
Bookmark and Share
Findings are published in the journal Nature Genetics.

Ten more DNA regions linked to type 2 diabetes have been discovered by an international team of researchers, bringing the total to over 60.

The study provides a fuller picture of the genetics and biological processes underlying type 2 diabetes, with some clear patterns emerging.

The international team, led by researchers from the University of Oxford, the Broad Institute of Harvard and MIT, and the University of Michigan, Ann Arbor, used a new DNA chip to probe deeper into the genetic variations that commonly occur in our DNA and which may have some connection to type 2 diabetes.

'The ten gene regions we have shown to be associated with type 2 diabetes are taking us nearer a biological understanding of the disease,' says principal investigator Professor Mark McCarthy of the Wellcome Trust Centre for Human Genetics at the University of Oxford.

Professor McCarthy continued, 'It is hard to come up with new drugs for diabetes without first having an understanding of which biological processes in the body to target. This work is taking us closer to that goal.'

Approximately 2.9 million people are affected by diabetes in the UK, and there are thought to be perhaps a further 850,000 people with undiagnosed diabetes.

Left untreated, diabetes can cause many different health problems including heart disease, stroke, nerve damage and blindness. Even a mildly raised glucose level can have damaging effects in the long term.

Type 2 diabetes is by far the most common form of the disease. In the UK, about 90% of all adults with diabetes have type 2 diabetes.

It occurs when the body does not produce enough insulin to control the level of glucose in the blood, and when the body no longer reacts effectively to the insulin that is produced.

The researchers analyzed DNA from almost 35,000 people with type 2 diabetes and approximately 115,000 people without, identifying 10 new gene regions where DNA changes could be reliably linked to risk of the disease.

Two of these showed different effects in men and women, one linked to greater diabetes risk in men and the other in women.

With over 60 genes and gene regions now linked to type 2 diabetes, the researchers were able to find patterns in the types of genes implicated in the disease.

Although each individual gene variant has only a small influence on people’s overall risk of diabetes, the types of genes involved are giving new insight into the biology behind diabetes.

Professor Mark McCarthy says: 'By looking at all 60 or so gene regions together we can look for signatures of the type of genes that influence the risk of type 2 diabetes.

'We see genes involved in controlling the process of cell growth, division and ageing, particularly those that are active in the pancreas where insulin is produced. We see genes involved in pathways through which the body's fat cells can influence biological processes elsewhere in the body. And we see a set of transcription factor genes - genes that help control what other genes are active.'

While gene association studies have been successful in finding DNA regions that can be reliably linked to type 2 diabetes, it can be hard to tie down which gene and what exact DNA change is responsible.

Professor McCarthy and colleagues' next step is to get complete information about genetic changes driving type 2 diabetes by sequencing people's DNA in full.

He is currently leading a study from Oxford University that, with collaborators in the US and Europe, has sequenced the entire genomes of 1,400 people with diabetes and 1,400 people without. First results will be available next year.

'Now we have the ability to do a complete job, capturing all genetic variation linked to type 2 diabetes,' says Professor McCarthy, a Wellcome Trust Senior Investigator. 'Not only will we be able to look for signals we’ve so far missed, but we will also be able to pinpoint which individual DNA change is responsible. These genome sequencing studies will really help us push forward towards a more complete biological understanding of diabetes.'


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Origin of a Species
A study by researchers at the Wellcome Trust Centre for Human Genetics at Oxford University has uncovered the key role played by a single gene in how groups of animals diverge to form new species.
Monday, February 15, 2016
Identifying Drug Resistance Traits
Scientists have developed an easy-to-use computer program that can quickly analyse bacterial DNA from a patient's infection and predict which antibiotics will work, and which will fail due to drug resistance.
Tuesday, December 22, 2015
Faster, Cheaper TB Diagnosis
Whole Genome Sequencing is a faster, cheaper and more effective way of diagnosing tuberculosis says a new study.
Wednesday, December 09, 2015
Why we Still Don’t Have Personalised Medicine
15 years after sequencing the human genome we still do not have the promised personalised medicine, why is this?
Friday, December 04, 2015
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Tuesday, November 24, 2015
Mini DNA Sequencer’s Data Belies its Size
A miniature DNA sequencing device that plugs into a laptop and was developed by Oxford Nanopore has been tested by an open, international consortium, including Oxford University researchers.
Tuesday, October 20, 2015
New Insight into Recombination and Sex Chromosomes
Not only does the platypus have some odd physical features, an updated version of its genome has also underscored the unusual genetic characteristics that it harbors.
Tuesday, May 12, 2015
Protein Clue To Sudden Cardiac Death
A protein has been shown to have a surprising role in regulating the 'glue' that holds heart cells together, a finding that may explain how a gene defect could cause sudden cardiac death.
Tuesday, February 17, 2015
Investment In Cancer Research At Oxford University
Centre for Molecular Medicine to focus on cancer genomics and molecular diagnostics, through a partnership with the Chan Soon-Shiong Institute.
Friday, October 24, 2014
Genetic Tracking Identifies Cancer Stem Cells in Patients
The gene mutations driving cancer have been tracked for the first time in patients back to a distinct set of cells at the root of cancer – cancer stem cells.
Friday, May 16, 2014
Eating Organic Food Doesn't Lower Overall Cancer Risk
Women who always or mostly eat organic foods have the same likelihood of developing cancer as women who eat conventionally produced foods.
Tuesday, April 01, 2014
New Trial of Personalized Cancer Treatment Begins in Oxford
Phase I trial in Oxford will investigate a new drug, called CXD101.
Tuesday, March 18, 2014
Interactive Map of Human Genetic History Revealed
Study identifies, dates and characterizes genetic mixing between populations.
Tuesday, February 18, 2014
Scientists Break Blood-Brain Barrier to Allow Cancer Drugs In
Oxford University scientists have found a way of delivering drugs more effectively to treat life-threatening cancers that have spread to the brain.
Tuesday, October 15, 2013
'Jekyll and Hyde' Protein Offers New Route to Cancer Drugs
The mood changes of a 'Jekyll-and-Hyde' protein, which sometimes boosts tumour cell growth and at other times suppresses it, have been explained.
Friday, September 27, 2013
Scientific News
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
Computational Model Finds New Protein-Protein Interactions
Researchers at University of Pittsburgh have discovered 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!