Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Ancient Enzymes Function like Nanopistons to Unwind RNA

Published: Wednesday, September 05, 2012
Last Updated: Wednesday, September 05, 2012
Bookmark and Share
Molecular biologists have solved one of the mysteries of how double-stranded RNA is remodeled inside cells in both their normal and disease states.

The discovery may have implications for treating cancer and viruses in humans.

The research, which was published this week in Nature, found that DEAD-box proteins, which are ancient enzymes found in all forms of life, function as recycling “nanopistons.”

They use chemical energy to clamp down and pry open RNA strands, thereby enabling the formation of new structures. This remodeling of RNA is essential to the basic functioning of cells.

“If you want to couple fuel energy to mechanical work to drive strand separation, this is a very versatile mechanism,” said co-author Alan Lambowitz, the Nancy Lee and Perry R. Bass Regents Chair in Molecular Biology in the College of Natural Sciences and director of the Institute for Cellular and Molecular Biology.

In all cellular organisms RNA (ribonucleic acid) plays a fundamental role in the translation of genetic information into the synthesis of proteins. DEAD-box proteins are the largest family of what are known as RNA helicases, which unwind RNA.

“It has been known for some time that these enzymes do not function like traditional helicases,” said Eckhard Jankowsky, professor of biochemistry at Case Western Reserve University Medical School.

“The research by Lambowitz and his colleagues now provides the critical information that explains how the unwinding reaction works. It marks a major step toward understanding the molecular mechanics for many steps in RNA biology.”

Lambowitz said that the basic insight came when Anna Mallam, a postdoctoral researcher in his lab, hypothesized that DEAD-box proteins function modularly. One area on the protein binds to an ATP molecule, which is the energy source. Another area binds to the double-stranded RNA.

“Once the second domain is latched on to the RNA,” said Mallam, “and the first has got its ATP, the ‘piston’ comes down. It has a sharp edge that drives between the two strands and also grabs on one strand and bends it out of the way.”

Lambowitz, Mallam and their colleagues uncovered this mechanism in Mss116p, a DEAD-box protein in yeast. The mechanism is almost certainly universal to the entire family of the proteins, however, and therefore to all domains of life.


“Every DEAD-box protein that we know about has the same structure,” said Lambowitz, “and they all presumably use the same mechanism.”


This flexibility of DEAD-box proteins is essential to the functioning of healthy cells, which rely on a range of RNA molecules for basic processes, including protein synthesis.


This flexibility is also hijacked in cancers — where over-expression of DEAD-box proteins may help drive uncontrolled cell proliferation — and in infections caused by bacteria, fungi and viruses, which rely on specific DEAD-box proteins for their propagation.


“These findings could have far-reaching implications for our ability to control the activities of proteins in this class when their functions go awry in disease states,” said Michael Bender, program director in the Division of Genetics and Developmental Biology at the National Institutes of Health, which partially funded the work.

Lambowitz even sees potential, much further down the line, for using the nanopistons as the basis of biomedical technology.


“You can even envision, in the far future, how they might be incorporated into artificial nanomachines,” he said, “for switches and other mechanical devices inside and outside the cell.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Insights Into Microbial Evolution
Researchers studing E. coli report that most new genetic mutations that were passed on were beneficial and occurred at much more variable rates.
Thursday, August 04, 2016
Fix for 3-Billion-Year-Old Genetic Error
Researchers at The University of Texas at Austin have developed a fix that allows RNA to accurately proofread for the first time.
Monday, June 27, 2016
New Breast Cancer Staging System
Neo-Bioscore adds HER2 status into previously developed system.
Monday, March 21, 2016
Mechanism of Tumor Suppressing Gene Uncovered
The most commonly mutated gene in cancer,p53, works to prevent tumor formation by keeping mobile elements in check that otherwise lead to genomic instability, UT Southwestern Medical Center researchers have found.
Tuesday, January 26, 2016
Gene-Editing Halts DMD Progression
Using a new gene-editing technique, a team of scientists from UT Southwestern Medical Center stopped progression of Duchenne muscular dystrophy (DMD) in young mice.
Tuesday, January 05, 2016
Critical New Insights on DNA Repair
The enzyme fumarase is key to reversing genetic damage leading to cancer and therapy resistance.
Wednesday, August 05, 2015
Can Cell Cycle Protein Prevent or Kill Breast Cancer Tumors?
An MD Anderson study has shown the potential of a simple molecule involved in cancer metabolism as a powerful therapeutic.
Monday, July 20, 2015
Partly Human Yeast Show A Common Ancestor’s Lasting Legacy
Edward Marcotte and his colleagues at the University of Texas at Austin created hundreds of strains of humanized yeast by inserting into each a single human gene and turning off the corresponding yeast gene.
Tuesday, May 26, 2015
Researchers Reveal Genomic Diversity Of Individual Lung Tumors
Findings suggest sequencing a single region of a localized tumor will identify driver mutations.
Friday, October 10, 2014
Metabolic Protein Launches Sugar Feast that Nurtures Brain Tumors
PKM2 slips into nucleus to promote cancer; potential biomarker and drug approach discovered.
Wednesday, November 28, 2012
New Genomic Technique Uncovers Coral Transcriptome
Researchers have uncovered the larval transcriptome of a reef-building coral by utilizing a new technique for cDNA preparation.
Tuesday, May 12, 2009
Genetic Variation Raises HIV Risk in People of African Descent
A genetic variation that may have protected people of African descent against a pandemic of malaria long ago now appears to increase their susceptibility to HIV infection.
Wednesday, July 23, 2008
When she's Turned on, Some of Her Genes Turn Off
When a female is attracted to a male, entire suites of genes in her brain turn on and off, show biologists from The University of Texas at Austin studying swordtail fish.
Thursday, December 20, 2007
Welch Foundation Gives $1.6 Million for Drug Discovery Research
UTMB scientist will lead computational chemistry program at John S. Dunn Gulf Coast Consortium for Chemical Genomics.
Monday, September 17, 2007
Scientific News
Faecal Bacteria Linked to Body Fat
Researchers at King’s College London have found a new link between the diversity of bacteria in human poo – known as the human faecal microbiome - and levels of abdominal body fat.
Scientists Find Lethal Vulnerability in Treatment-Resistant Lung Cancer
The study describes how the drug Selinexor killed lung cancer cells and shrank tumors in mice when used against cancers driven by the aggressive and difficult-to-treat KRAS cancer gene.
How Baby’s Genes Influence Birth Weight And Later Life Disease
The large-scale study could help to target new ways of preventing and treating these diseases.
Genes Underlying Dogs’ Social Ability Revealed
The social ability of dogs is affected by genes that also seem to influence human behaviour, according to a new study from Linköping University in Sweden.
‘Cellbots’ Chase Down Cancer, Deliver Drugs Directly to Tumors
Programmable T cells shown to be versatile, precise, and powerful in lab studies.
Modified Yeast Shows Plant Response to Key Hormone
Researchers have developed a toolkit based on modified yeast to determine plant responses to auxin.
ReadCoor Launched to Commercialize 3D Sequencing Tech
ReadCoor will leverage the Wyss Institute’s method for simultaneously sequencing and mapping RNAs within cells and tissues to advance development of diagnostics.
NCI Collaborates with Multiple Myeloma Research Foundation
NCI collaborates with MMRF to incorporate genomic and clinical data into NCI Genomic Data Commons database.
Epigenetic Clock Predicts Life Expectancy
New research finds 5 percent of population ages faster, faces shorter lifespan.
Regulatory RNA Essential to DNA Damage Response
Researchers discover a tumour suppressor is stabilized by an RNA molecule, which helps cells respond to DNA damage.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!