Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genetic Cause of Insulin Sensitivity Offers Diabetes Clues

Published: Friday, September 14, 2012
Last Updated: Friday, September 14, 2012
Bookmark and Share
The first single gene cause of increased sensitivity to the hormone insulin has been discovered by a team of Oxford University researchers.

The opposite condition – insulin resistance – is a common feature of type 2 diabetes, so finding this cause of insulin sensitivity could offer new opportunities for pursuing novel treatments for diabetes.
Although mutations in the PTEN gene cause a rare condition with increased risk of cancer, the biological pathways the gene is involved in could offer promising targets for new drugs.

The Oxford University researchers, along with colleagues at the Babraham Institute in Cambridge and the Churchill Hospital in Oxford, report their findings in the New England Journal of Medicine. The study was funded by the Wellcome Trust, the Medical Research Council, the National Institute for Health Research Oxford Biomedical Research Centre, and the Biotechnology and Biological Sciences Research Council.

'Insulin resistance is a major feature of type 2 diabetes,' says Dr Anna Gloyn of the Oxford Centre for Diabetes, Endocrinology and Metabolism at the University of Oxford, who led the work. 'The insulin-producing cells in the pancreas may be working hard and pumping out lots of insulin, but the body's cells no longer respond.

'Finding a genetic cause of the opposite – insulin sensitivity – gives us a new window on the biological processes involved. Such understanding could be important in developing new drugs that restore insulin sensitivity in type 2 diabetes.'

The PTEN gene encodes for an enzyme that is part of the insulin signalling pathway in the body. It is known to have a role in controlling the body's metabolism, and to play a part in cell growth. The Oxford team was interested in learning more about this dual role.

There is an inherited genetic condition called Cowden syndrome caused by faults in the PTEN gene. It is very rare and is thought to affect perhaps one in 200,000 people. There are around 300 people with the condition in the UK. PTEN's role in cell growth sees people with Cowden syndrome develop many benign polyps in their skin, mouth and bowel, and have a higher risk than the general population of developing breast cancer, thyroid cancer and womb cancer.

'PTEN is a gene that is heavily involved in processes for both cell growth and metabolism,' says first author Dr Aparna Pal of the University of Oxford. 'Given PTEN’s dual role, we were interested in understanding the metabolic profile of people with Cowden syndrome. It was possible that mutations in PTEN could improve metabolism.'

The team carried out glucose tolerance tests with 15 people with Cowden syndrome and 15 matched controls. Those with Cowden syndrome had significantly higher insulin sensitivity. In collaboration with their colleagues at the Babraham Institute, the team showed that this was caused by increased activity in the insulin signalling pathway.

The researchers also noticed that the body mass index of those with Cowden syndrome appeared greater than the controls. They carried out a comparison with a much larger control group of over 2,000 individuals from the Oxford Biobank, a data and tissue resource for research established by Professor Fredrik Karpe.

This confirmed that those with Cowden syndrome had higher levels of obesity as a group than the controls. The extra body weight appeared to be caused by extra fat, and there were no differences in where the fat was stored compared to controls.

'This was a surprise. Normally insulin sensitivity goes with being lean,' says Professor Karpe.
Dr Gloyn concludes: 'We now know that mutations that inactivate the PTEN gene result in increased cancer risk and obesity, but also increase insulin sensitivity which is very likely to protect against type 2 diabetes.

'The study shows how intimately the biological pathways governing cell growth and metabolism are linked. We need to thoroughly understand these pathways to identify which genes to target in the development of new drugs.'

She adds: 'While there are promising research avenues to pursue here, in the meantime the best way to avoid diabetes remains exercising more and eating less.'


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Identifying Drug Resistance Traits
Scientists have developed an easy-to-use computer program that can quickly analyse bacterial DNA from a patient's infection and predict which antibiotics will work, and which will fail due to drug resistance.
Tuesday, December 22, 2015
Faster, Cheaper TB Diagnosis
Whole Genome Sequencing is a faster, cheaper and more effective way of diagnosing tuberculosis says a new study.
Wednesday, December 09, 2015
Why we Still Don’t Have Personalised Medicine
15 years after sequencing the human genome we still do not have the promised personalised medicine, why is this?
Friday, December 04, 2015
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Tuesday, November 24, 2015
Mini DNA Sequencer’s Data Belies its Size
A miniature DNA sequencing device that plugs into a laptop and was developed by Oxford Nanopore has been tested by an open, international consortium, including Oxford University researchers.
Tuesday, October 20, 2015
New Insight into Recombination and Sex Chromosomes
Not only does the platypus have some odd physical features, an updated version of its genome has also underscored the unusual genetic characteristics that it harbors.
Tuesday, May 12, 2015
Protein Clue To Sudden Cardiac Death
A protein has been shown to have a surprising role in regulating the 'glue' that holds heart cells together, a finding that may explain how a gene defect could cause sudden cardiac death.
Tuesday, February 17, 2015
Investment In Cancer Research At Oxford University
Centre for Molecular Medicine to focus on cancer genomics and molecular diagnostics, through a partnership with the Chan Soon-Shiong Institute.
Friday, October 24, 2014
Genetic Tracking Identifies Cancer Stem Cells in Patients
The gene mutations driving cancer have been tracked for the first time in patients back to a distinct set of cells at the root of cancer – cancer stem cells.
Friday, May 16, 2014
Eating Organic Food Doesn't Lower Overall Cancer Risk
Women who always or mostly eat organic foods have the same likelihood of developing cancer as women who eat conventionally produced foods.
Tuesday, April 01, 2014
New Trial of Personalized Cancer Treatment Begins in Oxford
Phase I trial in Oxford will investigate a new drug, called CXD101.
Tuesday, March 18, 2014
Interactive Map of Human Genetic History Revealed
Study identifies, dates and characterizes genetic mixing between populations.
Tuesday, February 18, 2014
Scientists Break Blood-Brain Barrier to Allow Cancer Drugs In
Oxford University scientists have found a way of delivering drugs more effectively to treat life-threatening cancers that have spread to the brain.
Tuesday, October 15, 2013
'Jekyll and Hyde' Protein Offers New Route to Cancer Drugs
The mood changes of a 'Jekyll-and-Hyde' protein, which sometimes boosts tumour cell growth and at other times suppresses it, have been explained.
Friday, September 27, 2013
Genes Linked to Being Right or Left Handed Identified
A genetic study has identified a biological process that influences whether we are right handed or left handed.
Monday, September 16, 2013
Scientific News
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
Neanderthal DNA Influences Human Disease Risk
Large-scale, evolutionary analysis compares genetic data alongside electronic health records.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH has announced that decipher the genome of the blacklegged tick which could lead to new tick control methods.
"Dark Side" of the Transcriptome
New approach to quantifying gene "read-outs" reveals important variations in protein synthesis and has implications for understanding neurodegenerative diseases.
Individuals' Medical Histories Predicted by their Noncoding Genomes
Researchers have found that analyzing mutations in regions of the genome that control genes can predict medical conditions such as hypertension, narcolepsy and heart problems.
New Source of Mutations in Cancer
Recently, a new mutation signature found in cancer cells was suspected to have been created by a family of enzymes found in human cells called the APOBEC3 family.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!