Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Launches Trial for Rare Degenerative Muscle Disease Treatment

Published: Tuesday, September 25, 2012
Last Updated: Tuesday, September 25, 2012
Bookmark and Share
Clinical trial to evaluate the drug candidate DEX-M74 as a treatment for HIBM.

Researchers have launched a clinical trial to evaluate the drug candidate DEX-M74 as a treatment for a rare degenerative muscle disease, hereditary inclusion body myopathy (HIBM).

National Institutes of Health scientists from the National Center for Advancing Translational Sciences (NCATS) and the National Human Genome Research Institute (NHGRI) will conduct the clinical trial at the NIH Clinical Center.

HIBM, also known as GNE myopathy, has no available therapy. Disease symptoms emerge in adulthood and slowly lead to progressive muscle weakness.

Most patients develop symptoms in their early 20s and eventually require a wheelchair as their arm, hand and leg muscles weaken. Mutations in the GNE gene cause HIBM by producing low sialic acid levels in muscle proteins, which scientists think contributes to the symptoms of muscle weakness.

Normally, GNE produces an enzyme that produces sialic acid, a sugar important to muscle development and kidney function.

"This study marks an important milestone toward developing a treatment for an underserved patient population, and we would not be this far along had it not been for the teamwork and dedication of the researchers working on this collaboration," said Christopher P. Austin, M.D., the newly appointed NCATS director.

In 2007, Marjan Huizing, Ph.D., an associate investigator in NHGRI's Medical Genetics Branch, led a team of scientists in search of an HIBM treatment.

They hypothesized that a compound called ManNAc, now called DEX-M74, might improve the low sialic acid levels that cause HIBM. DEX-M74 is a sugar that the body converts to sialic acid.

Huizing and colleagues conducted studies that showed the compound was effective in controlling sialic acid levels in a mouse model with a specific GNE mutation. The researchers published their findings in the June 2007 issue of the Journal of Clinical Investigation.

Based on these results, they set out to evaluate the effects of DEX-M74 on progressive muscle weakness in HIBM patients. However, the project required additional funding for pre-clinical studies.

In 2009, NIH established its Therapeutics for Rare and Neglected Diseases (TRND) program, now part of NCATS, to facilitate the pre-clinical development of new drugs for these ailments. TRND scientists selected the development of DEX-M74 as a treatment for HIBM as one of its initial pilot projects.

The collaboration includes TRND researchers, the laboratories of Marjan Huizing, Ph.D., and of William A. Gahl, M.D, Ph.D., principal investigator of NHGRI's Medical Genetics Branch, and New Zealand Pharmaceuticals Limited (NZP).

NZP is manufacturing DEX-M74, which was developed by Drs. Gahl and Huizing and licensed from the NIH by NZP.

"TRND infused life into the HIBM project by supporting pre-clinical studies for the investigational new drug application," said Dr. Gahl, who also serves as NHGRI clinical director. "The program provides the missing link in the evolution of drug treatments. It is a resource that has the potential to develop new therapeutics for rare diseases, often with applicability to common disorders."

During the HIBM project, the TRND program has supported toxicology studies to evaluate the safety of DEX-M74. Researchers also generated chemistry manufacturing and controls data, which relate to the formulation and manufacturing process of a drug.

Based on the availability of these new data, the collaborators completed an IND application that the U.S. Food and Drug Administration recently allowed to go into effect.

"The TRND program was designed to provide the expertise and knowledge needed to advance potential treatments like DEX-M74 to human clinical trials," said John McKew, Ph.D., chief of the NCATS Therapeutic Development Branch and director of TRND.

McKew continued, "The results of this project demonstrate what a translational program like TRND can accomplish through collaborations that bring experts together from basic research, pre-clinical drug development, and clinical medicine."

The HIBM Phase I clinical trial will test a single dose of DEX-M74 in a small group of patients with a focus on drug safety and how well patients tolerate the drug.

Nuria Carrillo, M.D., TRND staff physician and principal investigator of the trial, plans to follow up the initial study with a Phase I/II trial in which patients will receive multiple doses of DEX-M74.

Researchers will monitor patients for drug tolerance and indications of drug effectiveness. If DEX-M74 is safe in the Phase I/II trial, researchers will plan a Phase II study to determine the clinical effectiveness of the drug in HIBM patients.

"The NIH has achieved a significant milestone in the development of a potential treatment for HIBM, and we are excited about this research reaching the clinical trial stage," said NZP Chief Executive Officer Andy Lewis. "The pre-clinical data are very strong, and we are keen to see DEX-M74 progress through the clinical phases. Once we have proven human efficacy we plan to offer DEX-M74 to patients."

The HIBM clinical trial is the third TRND project to advance to human clinical trials. The two other clinical trials are evaluating treatments for sickle cell disease and chronic lymphocytic leukemia.

Dr. Carrillo also is overseeing a natural history study of HIBM to collect health information from patients to understand how the disease develops. TRND has developed a portfolio of 14 projects, including HIBM, which focus on rare and neglected tropical diseases.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
NIH Study Identifies Gene Variant Linked to Compulsive Drinking
Mice carrying the Met68BDNF gene variant would consume excessive amounts of alcohol.
Tuesday, July 21, 2015
In Blinding Eye Disease, Trash-Collecting Cells Go Awry, Accelerate Damage
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Friday, July 03, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
NCI-MATCH Trial will Link Targeted Cancer Drugs to Gene Abnormalities
Precision medicine trial will open to patient enrollment in July.
Tuesday, June 09, 2015
A New Role for Zebrafish: Larger Scale Gene Function Studies
A relatively new method of targeting specific DNA sequences in zebrafish could dramatically accelerate the discovery of gene function and the identification of disease genes in humans.
Monday, June 08, 2015
NIH Researchers Pilot Predictive Medicine by Studying Healthy People’s DNA
New study sequence the genomes of healthy participants to find “putative,” or presumed, mutations.
Friday, June 05, 2015
Linking Targeted Cancer Drugs to Gene Abnormalities
Investigators at the NIH have announced a series of clinical trials that will study drugs or drug combinations that target specific genetic mutations.
Wednesday, June 03, 2015
Scientists Create Mice with a Major Genetic Cause of ALS and FTD
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Friday, May 22, 2015
Mice With a Major Genetic Cause of ALS and FTD Created
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Thursday, May 21, 2015
New Insights into How DNA Differences Influence Gene Activity, Disease Susceptibility
NIH-funded pilot study provides a new resource about variants across the human genome.
Friday, May 08, 2015
Souped-up Remote Control Switches Behaviors On-and-Off in Mice
BRAIN Initiative yields chemical-genetic tool with push-pull capabilities.
Thursday, May 07, 2015
NIH-funded Study Points Way Forward for Retinal Disease Gene Therapy
Benefits for Leber congenital amaurosis peak after one to three years, then diminish.
Tuesday, May 05, 2015
Possible Treatment for Lethal Pediatric Brain Cancer
NIH-funded preclinical study suggests epigenetic drugs may be used to treat leading cause of pediatric brain cancer death.
Tuesday, May 05, 2015
Statement on NIH Funding of Research Using Gene-Editing Technologies in Human Embryos
Researchers modify the gene responsible for a potentially fatal blood disorder using CRISPR/Cas9 technology.
Saturday, May 02, 2015
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Researchers Resurrect Ancient Viruses
Researchers at Massachusetts Eye and Ear and Schepens Eye Research Institute have reconstructed an ancient virus that is highly effective at delivering gene therapies to the liver, muscle, and retina.
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!