Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Professor Publishes Paper on First-ever Imaging of Cells Growing on Spherical Surfaces

Published: Tuesday, September 25, 2012
Last Updated: Tuesday, September 25, 2012
Bookmark and Share
Potential applications includethe early detection and isolation of cancer cells.

Shengyuan Yang, Florida Institute of Technology assistant professor of mechanical and aerospace engineering, with graduate student Sang Joo Lee, has published a paper on the first-ever imaging of cells growing on spherical surfaces. The paper is published in the online journal, Review of Scientific Instruments, and will appear later in September in the print version.

“In previously published research, the cell substrates are not defined as spherical surfaces. Our glass balls (from 5 microns to 2 mm) are commercial products and are clearly defined as balls. Additionally, we are growing single cells on these balls to study cell mechano-biological responses to substrate curvatures,” said Yang.

The potential biomedical applications of the researchers’ technique include new strategies and devices for the early detection and isolation of cancer cells, facilitating new methods of treating cancer tissues. “We also foresee new strategies and techniques to control the differentiation of stem cells and the morphologies and structures of the resulting cells and tissues,” said Yang.

The effects of substrate stiffness on cell behaviors have been extensively studied; however, the effects of substrate curvature are not well-documented. The curvature of the surface on which cells adhere can have profound effects on cell behaviors, according to Yang.

“To reveal these cell mechano-biological responses to substrate curvatures, we have introduced a novel, simple, and flexible class of substrates, polyacrylamide gels embedded with micro glass balls ranging in diameter from 5 microns to 2 mm, to culture cells. To the best of our knowledge, this is the first experimental attempt to study cell responses to spherically-shaped substrates. Our cell culture experiments imply that this class of substrates, micro glass ball embedded gels, can be useful tools to study cell mechanobiological responses to substrate curvatures, related cell and tissue engineering researches, and biomedical applications, such as cancer detection and treatment, and the control of stem cell differentiations, for example,” said Yang.

This work was supported with funding from the National Science Foundation (NSF) CAREER Program. The reviewer of this paper at Review of Scientific Instruments commented, according to Yang: “This is a clever idea. . . This work has great potentials with high impact.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
First Large-Scale Proteogenomic Study of Breast Cancer
The study offers understanding of potential therapeutic targets.
Fungi – A Promising Source Of Chemical Diversity
Moulds and plants share similar ways in alkaloid biosynthesis .
Great Migration and African-American Genomic Diversity
Study examines genetic data to analyze regional differences in ancestry.
Faster, More Efficient CRISPR Editing
UC Berkeley scientists have developed a quicker and more efficient method to alter the genes of mice with CRISPR-Cas9, simplifying a procedure growing in popularity because of the ease of using the new gene-editing tool.
New Tool Could Change How Infectious Diseases Are Diagnosed
Scientists at the University of Utah School of Medicine, ARUP Laboratories, and IDbyDNA, Inc., have developed ultra-fast, meta-genomics analysis software called Taxonomer that dramatically improves the accuracy and speed of pathogen detection.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!