Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Discover Gene That Causes Deafness

Published: Wednesday, October 03, 2012
Last Updated: Wednesday, October 03, 2012
Bookmark and Share
University of Cincinnati scientists have found a new genetic mutation responsible for deafness and hearing loss associated with Usher syndrome type 1.

These findings, published in the Sept. 30 advance online edition of the journal Nature Genetics, could help researchers develop new therapeutic targets for those at risk for this syndrome.
 
Partners in the study included the National Institute on Deafness and other Communication Disorders (NIDCD), Baylor College of Medicine and the University of Kentucky.
 
Usher syndrome is a genetic defect that causes deafness, night-blindness and a loss of peripheral vision through the progressive degeneration of the retina.
 
"In this study, researchers were able to pinpoint the gene which caused deafness in Usher syndrome type 1 as well as deafness that is not associated with the syndrome through the genetic analysis of 57 humans from Pakistan and Turkey,” says Zubair Ahmed, PhD, assistant professor of ophthalmology who conducts research at Cincinnati Children’s and is the lead investigator on this study.
 
Ahmed says that a protein, called CIB2, which binds to calcium within a cell, is associated with deafness in Usher syndrome type 1 and non-syndromic hearing loss.
 
"To date, mutations affecting CIB2 are the most common and prevalent genetic cause of non-syndromic hearing loss in Pakistan,” he says. "However, we have also found another mutation of the protein that contributes to deafness in Turkish populations.
 
"In animal models, CIB2 is found in the mechanosensory stereocilia of the inner ear—hair cells, which respond to fluid motion and allow hearing and balance, and in retinal photoreceptor cells, which convert light into electrical signals in the eye, making it possible to see,” says Saima Riazuddin, PhD, assistant professor in UC’s department of otolaryngology who conducts research at Cincinnati Children’s and is co-lead investigator on the study.
 
Researchers found that CIB2 staining is often brighter at shorter row stereocilia tips than the neighboring stereocilia of a longer row, where it may be involved in calcium signaling that regulates mechano-electrical transduction, a process by which the ear converts mechanical energy—or energy of motion—into a form of energy that the brain can recognize as sound.
 
"With this knowledge, we are one step closer to understanding the mechanism of mechano-electrical transduction and possibly finding a genetic target to prevent non-syndromic deafness as well as that associated with Usher syndrome type 1,” Ahmed says.
 
Other researchers involved in the study include Thomas Friedman, PhD, and Inna Belyantseva, MD, PhD, from the NIDCD; Suzanne Leal, PhD, and her team at Baylor; and Gregory Frolenkov, PhD, and his team at the University of Kentucky.
 
This study was funded by the NIDCD, the National Science Foundation and the Research to Prevent Blindness Foundation.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

UC Develops Unique Nano Carrier to Target Drug Delivery to Cancer Cells
Researchers have developed a unique nanostructure that can, because of its dual-surface structure, serve as an improved “all-in-one tool” against cancer.
Thursday, October 31, 2013
Scientific News
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!