Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Tying our Fate to Molecular Markings

Published: Tuesday, October 16, 2012
Last Updated: Tuesday, October 16, 2012
Bookmark and Share
Understanding how a chemical mark on our DNA affects gene expression could be as useful to scientists as fingerprints are to police at a crime scene.

In a new study, Emberly and his colleagues at Simon Fraser University cite proof that variable methylation, a chemical mark on our DNA, is predictive of age, gender, stress, cancer and early-life socioeconomic status within a population. The Proceedings of the National Academy of Sciences (PNAS) has just published the study online.

Working with researchers at the University of British Columbia and Stanford University, Eldon Emberly studied the variation of methylation over a large group of individuals.

DNA that is methylated in our genomes is known to affect whether genes are turned on or off. Gene expression predicates several attributes linked to our identity, such as gender, ethnicity, age and health.

The trio measured methylation from DNA in the white blood cells of 92 people aged 24 to 45. Emberly’s lab helped to mine the resulting data sets for correlations between variation in the chemical mark and variable social, psychological and physical traits in the subjects.

The results demonstrated that those who had experienced childhood poverty had a different methylation level from those who hadn’t. This was despite the fact everyone in the cohort had achieved the same socioeconomic status later in life.

That meant that early-life environment had left a detectable molecular mark on an individual’s DNA.

The correlation between methylation and gene expression was complex because it wasn’t always predictable but there was one connection of particular note says Emberly, an SFU associate professor.

“Variable methylation correlated with variable expression of the gene DDX4, which is linked to certain cancers.”

Emberly says this study’s discoveries raise interesting questions, as the connection between methylation and some traits, such as smoking and alcohol consumption, was weaker than expected or non existent.

“We’re now investigating whether methylation variation in different types of tissue is more predictive of some trait,” adds Emberly.

Pau Farre, a master’s of science student in physics under Emberly’s supervision, is doing a statistical analysis of the variability in methylation across tissues.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Help Tackle Forest Pests with Genomics
Simon Fraser University Beedie School of Business professor Jeremy Hall is leading the social science research component in a new project dedicated to significantly reducing forest pests in Canada, and ultimately globally.
Wednesday, December 07, 2011
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!