Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A*STAR Scientists Identify Mutation That Causes Skin Hyperproliferation

Published: Friday, October 19, 2012
Last Updated: Thursday, October 18, 2012
Bookmark and Share
Scientists found that punctate PPK is caused by mutations in the AAGAB gene.

Scientists have identified a mutation in a gene that causes patches of very thick skin to appear on the palms and soles of affected people.

This skin disorder is related, albeit in a much milder form, to that of the Indonesian 'Tree Man', Dede Koswara. These thick rough skin patches on hands and feet steadily increase in number as a person ages and often coalesce to form larger lesions. In severe cases, these lesions can be painful and debilitating.

The team of scientists from A*STAR's Institute of Medical Biology (IMB), in collaboration with hospitals and research centres from the UK, Japan and Tunisia, found that this skin disorder, called punctate palmoplantar keratoderma (punctate PPK), is caused by mutations in the AAGAB gene.

Punctate PPK is a rare subtype of palmoplantar keratoderma (PPK), which appears in subtly different forms and seems to have several possible causes.

Several families in Singapore are afflicted by different types of PPKs and scientists at A*STAR have also been working with doctors at the National Skin Centre to understand the different forms of this skin disorder.

The identification of the gene mutation will help scientists to better understand the molecular basis of this disease and potentially lead to a suitable treatment.

This discovery will improve the classification and diagnosis of PPKs as well as open the door to novel approaches to treatment of skin disorders. These findings were published in the recent advanced online issue of Nature Genetics on 14th October.

The scientists analyzed DNA samples collected from 18 families from Scotland, Ireland, Japan and Tunisia who had punctate PPK. They showed that the AAGAB gene, which encodes the protein p34, was expressed in skin and had a role in the control of cell division.

The depletion in AAGAB led to a deficiency in p34, which resulted in increased cell proliferation in the outer layers of skin, the epidermis, because of an increased growth signal coming through the epidermal growth factor receptor (EGFR).

The disruption of EGFR signalling is a feature of abnormal cell proliferation and the discovery suggests that PPK may be a benign form of hyperproliferation.

Dr Bruno Reversade, Senior Principal Investigator at IMB, who is a member of the team said, "The study of rare genetic disorders can often provide unexpected links; the phenotype seen in punctate PPK patients bears striking resemblance to common warts, and it is tempting to speculate that HPV could also hijack the same pathways to induce skin hyperproliferation. This discovery also demonstrates that EGFR, a hallmark of skin cancer, is part of the molecular explanation of the over proliferation of lesions in PKK patients."

"Every time we find a new genetic mutation that causes a skin disorder, it helps patients and their families to demystify their condition," said Prof Birgitte Lane, Executive Director of IMB.

Prof Lane continued, "With scientists and doctors working towards common goals like this, we find better treatments for more and more of these rare conditions."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A*STAR Scientists Discover Gene Critical for Proper Brain Development
This gene accounts for the size of the human brain and potentially our superior cognitive abilities.
Friday, December 26, 2014
Gene Associated with an Aggressive Breast Cancer Identified
Over-expressed gene in triple negative breast cancer offers new diagnostics for risk assessment.
Wednesday, December 03, 2014
Novel Gene Predicts Both Breast Cancer Relapse and Response to Chemotherapy
A predictive marker discovered by scientists at A*STAR and NUS could help doctors classify breast cancer patients for more effective treatment.
Thursday, August 21, 2014
New Tool to Study Critical Protein Interaction in Cancer Research
A*STAR scientists used fluorescent molecular rotors to study protein-protein interactions involving p53 and MDM2 in cells.
Thursday, July 03, 2014
New Possibilities for Leukaemia Therapy with a Novel Mode of Cancer Cell Recognition
A new class of lipids in human leukaemia cells trigger an immune response to kill the cells.
Thursday, June 26, 2014
Nature and Nurture: Baby's Development is Affected by Genes and Conditions in the Womb
First attempt to discover how genetic and environmental factors affect the human epigenome.
Tuesday, April 29, 2014
Elephant Shark Genome Provides New Insights into Bone Formation in Humans
A*STAR-led international consortium completely decodes the first shark-family member genome.
Thursday, January 09, 2014
A*STAR Scientists Discover Novel Hormone Essential for Heart Development
This unusual discovery could aid cardiac repair and provide new therapies to common heart diseases and hypertension.
Friday, December 06, 2013
A*STAR and NUS Launch Joint Centre
The S$148 million centre will study the role of nutrition and early development in health and disease in Asia.
Thursday, October 10, 2013
Scientists Find a Promising Way To Boost The Body’s Immune Surveillance Via p53
Researchers at A*STAR have discovered a new mechanism involving p53, the famous tumour suppressor, to fight against aggressive cancers.
Thursday, September 26, 2013
Singapore Scientists Discover New RNA Processing Pathway Important in hESCs
Discovery of RNA regulator could lead to a better understanding of diseases like cancer and influenza.
Monday, September 09, 2013
Scientists at GIS Discover Gene that Controls the Birth of Neurons
Discovery of long non-coding RNA's role in neurogenesis may lead to cures for diseases such as Alzheimer's disease.
Thursday, August 29, 2013
A*STAR Scientist Alex Matter Awarded Prestigious Szent-Gyorgyi Prize For Progress In Cancer Research
National Foundation for Cancer Research honours Professor Alex Matter with esteemed award for groundbreaking cancer pill that gives leukaemia patients a new lease of life.
Friday, April 05, 2013
A*STAR Scientists Make Discovery of Cell Nucleus Structure Crucial to Understanding Diseases
Genes relocated from their correct position in the nucleus cause them to malfunction and this may lead to the heart, blood vessels and muscles breaking down.
Friday, February 08, 2013
A*STAR's GIS Collaborates with GSK to Further Research on Lung Cancer
Partnership will advance both organizations' joint efforts towards finding a cure for the disease.
Thursday, January 31, 2013
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Researchers Resurrect Ancient Viruses
Researchers at Massachusetts Eye and Ear and Schepens Eye Research Institute have reconstructed an ancient virus that is highly effective at delivering gene therapies to the liver, muscle, and retina.
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!