Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study: How Cells form 'Trash Bags' for Recycling Waste

Published: Tuesday, October 23, 2012
Last Updated: Tuesday, October 23, 2012
Bookmark and Share
A class of membrane-sculpting proteins create vesicles that carry old and damaged proteins from the surface of cellular compartments into internal recycling plants where the waste is degraded and components are reused.

A Cornell study in the Oct. 12 issue of Cell may explain how these membrane-sculpting proteins, known as Endosomal Sorting Complexes Required for Transport (ESCRTs), create vesicles, a process that has remained a mystery since ESCRTs were discovered more than a decade ago.

If these "trash bags" are unable to make their deliveries, numerous diseases including cancer and neurodegenerative diseases emerge. Furthermore, viruses like HIV can hijack these membrane-sculpting proteins to burst out of infected cells.

The study was led by Mike Henne and Nicholas Buchkovich, postdoctoral researchers in the lab of Scott Emr, the paper's senior author and director of Cornell's Weill Institute for Cell and Molecular Biology. It describes how the researchers reconstituted a portion of the ESCRT machinery -- a complex known as ESCRT-III -- that bends the cellular membranes, a key step before the envelope eventually pinches off and closes to form vesicles. The researchers then visualized the membrane-bending process using a high-power electron microscope.

The researchers were able to show that proteins within the ESCRT-III complex work in stages where one protein assembles into spirals while other proteins transform these spirals further into tighter corkscrew-shaped helices, which then bend the cellular membrane prior to it forming into a vesicle.

"We believe these experiments tell us that ESCRT-III is a dynamic complex that generates vesicles by forming a spring-like filament that can bend membranes," Henne said. If true, this could be a novel method for creating membrane curvature in cells, he added.

Altogether, the ESCRT machinery is composed of five distinct complexes that must work together to do their job. These complexes are thought to recruit one another to the surface of vesicles in a specific sequence of events.

After visualizing the ESCRT-III complex, the researchers examined how ESCRT-III interacts with its neighbor and recruiter, ESCRT-II. They found that ESCRT-II controlled ESCRT-III architecture, but also works with ESCRT-III to create tiny ESCRT-III rings on the membrane surface. Since ESCRT-II contains a specialized protein responsible for grabbing trash, the researchers believe that ESCRT-II and ESCRT-III work together to first grab and then trap cellular garbage in this ESCRT-III ring before the ring eventually matures into the membrane bending spring.

Vesicles hold different cellular materials, and many of them carry protein waste. They also regulate cell-signaling receptors at the cell surface by internalizing them and thereby shutting them down, before they are carried to the cell's recycling plants, known as lysosomes, where they are degraded by digestive enzymes.

Uncovering these steps of the process opens the door for future research by Emr's lab to explore exactly how the final moment of vesicle formation -- the "pinching off" step that seals the top of the vesicular bag known as "scission" -- is mediated. Vesicle scission remains one of the outstanding questions in the field.

Henne is the 2011 Sam and Nancy Fleming Fellow. The fellowship was established in 2008 through a gift from Sam Fleming, chairman of Cornell's Life Sciences Advisory Board and former vice chairman of the Cornell Board of Trustees, and his wife, Nancy. The Flemings also support numerous academic activities in Cornell's New Life Sciences Initiative.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tumor-suppressing Gene Lends Insight to Cancer Treatment
Researchers have found that delicate replication process derails if a gene named PTEN has mutated or is absent.
Tuesday, July 14, 2015
A ‘STAR’ is Born: Engineers Devise Genetic 'On' Switch
A new “on” switch to control gene expression has been developed by Cornell scientists.
Tuesday, February 03, 2015
Computer Model Reveals Cancer's Energy Source
Findings focused on the energy-making process in cancer cells known as the Warburg Effect.
Tuesday, August 19, 2014
For Cancer Patients, Sugar-Coated Cells are Deadly
Paszek’s lab will focus on developing high-resolution microscopy to further study cell membrane-related cancer mechanisms.
Friday, June 27, 2014
Shark, Human Proteins are Surprisingly Similar
Despite widespread fascination with sharks, the world’s oldest ocean predators have long been a genetic mystery.
Friday, December 06, 2013
Gold-Plated Nano-Bits Find, Destroy Cancer Cells
Scientists have merged tiny gold and iron oxide particles, then added antibody guides to steer them through the bloodstream toward colorectal cancer cells.
Monday, October 21, 2013
Using Genes to Rescue Animal and Plants from Extinction
With estimates of losing 15 to 40 percent of the world’s species over the next four decades researchers whether science should employ genetic engineering to the rescue.
Friday, September 27, 2013
Dad’s Genes Build Placentas
Though placentas support the fetus and mother, it turns out that the organ grows according to blueprints from dad.
Monday, August 12, 2013
Physicists Tease out Twisted Torques of DNA
Like an impossibly twisted telephone cord, DNA, the molecule that encodes genetic information, also often finds itself twisted into coils.
Monday, July 01, 2013
Expelled DNA that Traps Toxins May Backfire in Obese
The body’s most powerful immune cells may have a radical way of catching their prey that could backfire on people who are overweight.
Wednesday, June 19, 2013
Genetic Switches Play Big Role in Human Evolution
Study offers further proof that the divergence of humans from chimpanzees was profoundly influenced by mutations to DNA sequences.
Wednesday, June 12, 2013
Genome Offers Clues to Amphibian-Killing Fungus
A fungus that has decimated amphibians globally is much older than previously thought.
Thursday, May 30, 2013
Scientists Find Clues to Some Inherited Heart Diseases
Cornell researchers have uncovered the basic cell biology that helps explain heart defects found in diseases known as laminopathies.
Tuesday, May 07, 2013
Scientists Develop World's Smallest Drug Deliverer
Cornell researchers have created a pore in “Cornell Dots” – brightly glowing nanoparticles nicknamed C-Dots – that can carry medicine.
Friday, April 12, 2013
DNA Editor Named Runner-up Breakthrough of 2012
A discovery that allows life scientists to precisely edit genomes for everything from crop and livestock improvement to human gene and cell therapy was named runner-up for Science magazine's 2012 Breakthrough of the Year.
Wednesday, February 27, 2013
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
10X Genomics Releases Linked-Read Data from NIST Genome Samples
Genome in a Bottle Consortium data submission for webinar presentation and public availability.
Watching a Tumour Grow in Real-Time
Researchers from the University of Freiburg have gained new insight into the phases of breast cancer growth.
Childhood Cancer Cells Drain Immune System’s Batteries
Cancer cells in neuroblastoma contain a molecule that breaks down a key energy source for the body’s immune cells, leaving them too physically drained to fight the disease.
Urine Proteins Point to Early-Stage Pancreatic Cancer
A combination of three proteins found at high levels in urine can accurately detect early-stage pancreatic cancer, researchers at the BCI have shown.
Researcher Discovers Trigger of Deadly Melanoma
New research sheds light on the precise trigger that causes melanoma cancer cells to transform from non-invasive cells to invasive killer agents, pinpointing the precise place in the process where "traveling" cancer turns lethal.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Researchers Resurrect Ancient Viruses
Researchers at Massachusetts Eye and Ear and Schepens Eye Research Institute have reconstructed an ancient virus that is highly effective at delivering gene therapies to the liver, muscle, and retina.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!