Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Yale Researchers Identify Genetic Cause of Rare Infant Epileptic Disorder

Published: Wednesday, October 24, 2012
Last Updated: Wednesday, October 24, 2012
Bookmark and Share
A team of researchers has identified the gene that, when mutated, causes a devastating early-onset disorder in babies known as “malignant migrating partial seizures of infants,” or MMPSI.

MMPSI is a rare, severe brain disorder that appears in the first six months of life. It is characterized by treatment-resistant epileptic seizures and developmental delay. Further, the electrical activity appears to “migrate” through various regions of the brain, which gives the disorder its name. Although the recurrent seizures and electrical discharges in the brain abate with age, the patient’s intellectual and motor development is arrested in infancy.

In collaboration with a group at the Hopital Necker-Enfants Malades in Paris, France, the Yale team found that the disease-causing gene, which was identified by selective DNA exome sequencing in a dozen patients affected by MMPSI, results in the overactivity of a protein that normally controls the excitability of neurons. The Yale team also discovered that the affected protein interacts with another protein that, when defective, is known to produce Fragile X syndrome, the leading inherited cause of autism and intellectual disability.

“For the first time, we have a target for future therapeutic approaches to treating this devastating condition,” said co-first author Matthew Fleming, postdoctoral researcher at Yale School of Medicine.
All of the data to characterize the aberrant protein in this study were generated in lab of Leonard Kaczmarek, professor of pharmacology and of cellular and molecular physiology at Yale School of Medicine.

Kaczmarek explains, “We believe this to be the first epilepsy-associated gene to be identified by exome sequencing in a handful of affected patients,” says Kaczmarek. “Moreover, it provides a very important glimpse into why some epilepsies are so devastating for brain function while others seem to have no effect on intellectual development.”

Corresponding author Rima Nabbout, co-first author Giulia Barcia, and authors Aline Deligniere, Isabelle Desguerre and Olivier Dulac are with the Assistance Publique-Hopitaux de Paris. Other authors are Vali Gazula, Maile Brown, Jack Kronengold of Yale; Haijun Chen of the State University of New York, Albany; Avinash Abhyankar of The Rockefeller University; Roberta Cilio of Children’s Hospital, Rome; Patrick Nitschke, Anna Kaminska, Maeva Langouet, Arnold Munnich, Laurence Colleaux and Nathalie Boddaert of Hopital Necker-Enfants Malades, Paris.

The study was supported by grants from the Centre National de la Recherche Scientifique, the French National Research Agency, the U.S. National Institutes of Health, the FRAXA Foundation, the St. Giles Foundation, and the Rockefeller University.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Unexpected Role for Epigenetic Enzymes in Cancer
Researchers use epigenetics to identify the role of an enzyme family as regulators of genetic message interpretation in yeast.
Tuesday, December 06, 2016
Precision Medicine for Rheumatoid Arthritis
Researchers identify gene mechanism that increases rheumatoid arthritis risk in susceptable individuals.
Tuesday, November 22, 2016
Genetic Repurposing
New study suggests that a mammalian bone and muscle gene may be repurposed to fuel cognition in humans
Monday, November 14, 2016
Editing Gene Mutations in Anemia
Researchers successfully use a new gene editing strategy to correct mutations that cause a form of anemia.
Wednesday, October 26, 2016
Genes Help Track Odd Migrations of Zika Mosquitoes
Study shows that mosquitoes carrying Zika virus or Dengue fever a genetically distinct around the world.
Wednesday, October 26, 2016
Ovarian Cancer Insight
Study showed tumours release cytokines to attract macrophages, which secrete growth factors that in turn promote tumour growth.
Wednesday, October 19, 2016
New Model for Understanding Human Myeloma
Researchers develop mouse model where mice carry six human genes involved in human tumour growth.
Monday, October 17, 2016
Genes Behind Certain Aggressive Cancers Identified
Researchers have found the genes behind aggressive ovarian and endometrial cancers.
Tuesday, October 11, 2016
Cancer Drug Resistance Runs Deeper Than Single Gene
Study suggests abnormalities in gene networks offer better therapy response prediction than individual genes.
Monday, October 10, 2016
Gene-Editing 'Toolbox' Targets Multiple Genes Simultaneously
Researchers have designed a system that modifies, or edits, multiple genes in a genome at once while minimising unintentional effects.
Thursday, July 28, 2016
Effects Of Maternal Smoking Continue Long After Birth
Yale study shows that maternal smoking is linked to behavioural changes.
Wednesday, June 01, 2016
Gene Testing Now Allows Precision Medicine for Thoracic Aneurysms
Researchers at the Aortic Institute at Yale have tested the genomes of more than 100 patients with thoracic aortic aneurysms, a potentially lethal condition, and provided genetically personalized care.
Monday, July 20, 2015
After a Sip of Milkshake, Genes and Brain Activity Predict Weight Gain
The new study published in The Journal Neuroscience.
Thursday, May 21, 2015
Gene Editing Corrects Mutation In Cystic Fibrosis
Yale researchers successfully corrected the most common mutation in the gene that causes cystic fibrosis, a lethal genetic disorder.
Monday, April 27, 2015
Single-Cell, 42-plexed Protein Analysis Achieved with a New Microchip Technology
A novel microdevice capable of detecting 42 unique immune effector proteins has been developed.
Tuesday, February 17, 2015
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Personality Traits, Psychiatric Disorders Linked to Specific Genomic Locations
Researchers have unearthed genetic correlations between personality traits and psychiatric disorders.
Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Diabetes Missing Link Discovered
Researchers from the University of Auckland have shown that beta catenin plays a vital role in the control of insulin release from the pancreas.
Study Reveals New Role for Hippo Pathway in Suppressing Cancer Immunity
Hippo pathway signaling regulates organ size by moderating cell growth, apoptosis and stem cell renewal, but dysregulation contributes to cancer development.
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
Gene Editing Yields Tomatoes That Ripen Weeks Earlier
Research team develop method to make tomato plants flower and ripen fruit two weeks faster than current growth rates.
Exploring the Genome of the River Blindness Parasite
Researchers have decoded the genome of the parasite that causes the skin and eye infection known as river blindness.
Gene Therapy Maintains Clotting Factor for Hemophilia Patients
Following a single gene therapy dose, the highest levels of an essential blood clotting factor IX were observed in hemophilia B patients.
Unexpected Role for Epigenetic Enzymes in Cancer
Researchers use epigenetics to identify the role of an enzyme family as regulators of genetic message interpretation in yeast.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!