Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

COLTHERES Consortium Identifies Molecular Signatures Leading to Personalized Therapies for Colorectal Patients

Published: Thursday, October 25, 2012
Last Updated: Wednesday, October 24, 2012
Bookmark and Share
18 month report also includes evidence to support novel therapeutic approaches.

COLTHERES (the Colon Therapy Research Consortium) has revealed in its first interim report key results that will enable a more personalized and effective approach to be taken in treatment of colon cancer using two novel drugs; the EGFR inhibitor Cetuximab and the BRaf inhibitor Vemurafinib.

COLTHERES is a four year project, which was established with funding from the EU Framework-7 program, to uncover new genetic biomarkers that will predict which patients are most likely to respond to a range of new targeted therapies in colon cancer and whether the majority of patients who are resistant can be rendered sensitive again using specific drug combinations.

COLTHERES integrates experts in biomarker-driven clinical trials, genomics, functional genomics, and isogenic disease model generation using rAAV-mediated genome editing, to comprehensively identify, validate and translate new candidate biomarkers of drug response and novel drug combinations into the clinical setting.

The key findings detailed in the interim report were:

• Identification of biomarkers in patients resistant to EGFR targeted therapies, to enable a more personalized approach to therapy

Building on seminal founding studies by members of the COLTHERES consortium, which showed that activating mutations in KRAS are the cause of resistance to EGFR-inhibitors in 30-40% of colon cancer patients, the consortium has now identified additional biomarkers in a further 30-40% of patients who are resistant to Cetuximab.

These include mutations in key downstream molecules, over-expression of activating or competing molecules, or loss of pathway inhibitors which, when combined with a global gene expression signature also developed by the team, will form a far more comprehensive ability to identify responders to Cetuximab treatment than by KRAS mutations alone.

• Molecular evidence to support an alternative therapeutic approach for BRAF mutant patients

The consortium has also identified why some BRAF mutant colon cancer patients, in stark contrast to melanoma patients, are unresponsive to Vemurafenib therapy (an inhibitor of BRAF). In this case, a rapid feedback activation of the EGFR receptor was found in colon cancers that are being treated with Vemurafinib, which opens up the possibility that a targeted combination of an EGFR-inhibitor and Vemurafinib may now allow a robust response in these patients. In vitro and preclinical data are encouraging in this regard and a clinical trial is now the planning stages.

• Validation of a new diagnostic technique for early prediction of patient relapse

A cutting-edge diagnostic technique called ‘BEAMing’ has been used by the Consortium to monitor and analyze tumor DNA over time in the blood of patients who are initially responsive to treatment, enabling the detection of secondary ‘acquired’ mutations in the KRAS gene that are causally associated with acquired resistance to targeted therapies for colorectal cancer.

As these mutations can be detected using simple non-invasive liquid biopsies, and critically several months before radiographic evidence of disease progression is observable, clinicians can anticipate and counter resistance using targeted drug combinations before the patient relapses.

Prof. Alberto Bardelli, IRCC University of Torino, co-founder Horizon Discovery Ltd and Lead Investigator of COLTHERES, said: “In its first 18 months COLTHERES has exceeded our expectations; defining new molecular markers leading to personalized therapies for colorectal cancer patients and providing data for use as the basis of innovative clinical trials. The expertise and technologies offered by the consortium members have made this possible, and we anticipate further breakthroughs in the remainder of the project term.”

Members of the COLTHERES consortium have jointly authored a number of publications in high profile journals such as Nature over the first 18 months of the program, and results have been presented at international meetings such as AACR, ESMO and ASCO.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Heart Arrhythmia Caused by Mosaic of Mutant Cells
Researchers have solved the genetic mystery of an infant suffering from heart arrhythmia.
Crispr Toolbox Expanded By Protein
Researchers have shown a newly discovered CRISPR protein has two distinct RNA cutting activities.
Genetic Impact of Endurance Training
Research has found that endurance training changes genetic activity in thousands of genes, giving rise to large number of altered RNA variants.
Wearable Microscope Can Measure Fluorescent Dyes Through Skin
UCLA research could make monitoring disease biomarkers easier and more cost-effective.
“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
A Diversity of Genomes
New DNA from understudied groups reveals modern genetic variation, ancient population shifts.
Gene Could Reduce Female Mosquitoes
Virginia Tech researchers have found a gene that can reduce female mosquitoes over many generations.
Improving Crop Efficiency with CRISPR
New study of CRISPR-Cas9 technology from Virginia Tech shows potential to improve crop efficiency.
Examining mtDNA May Help Identify Unknown Ancestry That Influences Breast Cancer Risk
Researchers studying mtDNA in a group of triple negative breast cancer patients found that 13 percent of participants were unaware of ancestry that could influence their risk of cancer.
Bacteria Use Ranking Strategy to Fight Off Viruses
Researchers have explained why microbes store virus confrontation information sequentially, with most recent attacks first.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!