Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Yale-led Team Decodes Genetic Basis of Inflammatory Bowel Disease

Published: Friday, November 02, 2012
Last Updated: Thursday, November 01, 2012
Bookmark and Share
Study appears in the November 1 issue of the journal Nature.

In one of the largest studies of its kind ever conducted, an international team of scientists has thrown new light on the genetic basis of inflammatory bowel disease (IBD), a group of chronic autoimmune digestive disorders affecting 2.5 million people worldwide. The study appears in the November 1 issue of the journal Nature.

The new study links variations in 163 regions of the human genome, 71 of which are newly discovered, to an increased risk of contracting IBD.

These regions showed a striking overlap with those implicated in other autoimmune diseases, note researchers, and suggest that IBD results from overactive immune defense systems that evolved to fight off serious bacterial infections.

In IBD, the body’s immune system produces an ongoing inflammatory reaction in the intestinal tract that injures the intestinal wall, leading to diarrhea and abdominal pain.

IBD patients typically require lifelong treatment with drug therapy, and often need surgery to repair tissue damage caused by the disease.

“Up until this point we have been studying the two main forms of IBD, Crohn’s disease and ulcerative colitis, separately,” said co-lead author Judy H. Cho, the Henry J. and Joan W. Binder Professor of Gastroenterology and professor of genetics at Yale School of Medicine. “We created this study based on what seems to be a vast amount of genetic overlap between the two disorders.”

In the first step of the study, the researchers conducted a “meta-analysis” of 15 previous genomic studies of either Crohn’s disease (CD) or ulcerative colitis (UC), the two most common forms of IBD, creating a large dataset that combined genetic information from some 34,000 individuals who took part in those studies.

The results then formed part of a second meta-analysis that included data from new genome-wide scans of more than 41,000 DNA samples from CD/UC patients and healthy comparison subjects collected at 11 centers around the world by the International IBD Genetics Consortium.

In addition to confirming that 92 regions identified in previous research confer a significant risk of CD, UC, or both, the study linked 71 additional stretches of the genome to IBD.

The IBD-linked variants identified by the scientists largely fall in genomic regions that regulate the expression of immune-system genes implicated in other autoimmune diseases, particularly the skin disease psoriasis and an inflammatory joint disorder known as ankylosing spondylitis.

Genes affected by these regulatory regions are also involved in the production of immune cells that fight infection by mycobacteria, a family of microbes that cause diseases such as leprosy and tuberculosis.

“We see a genetic balancing act between defending against bacterial infection and attacking the body’s own cells,” said Jeffrey Barrett of the Wellcome Trust Sanger Institute in Cambridge, England, also a lead author of the study.

Barrett continued, “Many of the regions we found are involved in sending out signals and responses to defend against bad bacteria. If these responses are over-activated, we found it can contribute to the inflammation that leads to IBD.”

Nearly 100 scientists in 15 countries contributed to the new work, which “highlights the incredible power that working together in a large team can have,” said Cho, director of the inflammatory bowel disease center in Yale’s Department of Internal Medicine.

“This would not have been possible without the thousands of DNA samples from patients with these conditions assembled by the International IBD Genetics Consortium. Collectively, our findings have begun to uncover the biological mechanisms behind this disease.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Effects Of Maternal Smoking Continue Long After Birth
Yale study shows that maternal smoking is linked to behavioural changes.
Wednesday, June 01, 2016
Gene Testing Now Allows Precision Medicine for Thoracic Aneurysms
Researchers at the Aortic Institute at Yale have tested the genomes of more than 100 patients with thoracic aortic aneurysms, a potentially lethal condition, and provided genetically personalized care.
Monday, July 20, 2015
After a Sip of Milkshake, Genes and Brain Activity Predict Weight Gain
The new study published in The Journal Neuroscience.
Thursday, May 21, 2015
Gene Editing Corrects Mutation In Cystic Fibrosis
Yale researchers successfully corrected the most common mutation in the gene that causes cystic fibrosis, a lethal genetic disorder.
Monday, April 27, 2015
Single-Cell, 42-plexed Protein Analysis Achieved with a New Microchip Technology
A novel microdevice capable of detecting 42 unique immune effector proteins has been developed.
Tuesday, February 17, 2015
New Class of Synthetic Molecules Mimics Antibodies
A Yale University lab has crafted the first synthetic molecules that have both the targeting and response functions of antibodies.
Wednesday, December 24, 2014
Immune Cells get Cancer-Fighting Boost From Nanomaterials
Yale researchers used bundled carbon nanotubes to incubate cytotoxic T cells.
Monday, August 18, 2014
Gene that Causes Obesity-Related Metabolic Syndrome Identified
Yale-led research has identified a genetic mutation responsible for the cluster of cardiovascular risk factors that comprise the obesity-related “metabolic syndrome.”
Friday, May 16, 2014
Tsetse Fly Genome Sequenced
Research opens the door to scientific breakthroughs that could reduce or end African sleeping sickness in sub-Saharan Africa.
Friday, April 25, 2014
Deleting Single Gene Reduces Fat in Mice
By deleting a single gene, researchers at Yale University were able to dramatically reduce fat mass in mice while expanding their lifespan by 20%.
Tuesday, March 25, 2014
Genetic Mutation Causes Lupus in Mice
Discovery could open the way for development of therapies that target the mutation.
Tuesday, January 07, 2014
Yale’s Lifton Receives $3 Million Science Prize
Richard Lifton has received a $3 million Breakthrough Prize in Life Sciences, created by top Silicon Valley entrepreneurs.
Monday, December 16, 2013
Follow the Genes: Yale Team Finds Clues to Origin of Autism
A team of researchers has pinpointed which cell types and regions of the developing human brain are affected by gene mutations linked to autism.
Wednesday, November 27, 2013
Yale and Harvard Researchers Rewrite an Entire Genome
Scientists recoded the entire genome of an organism and improved a bacterium’s ability to resist viruses.
Friday, October 18, 2013
Awakening Genes that Suppress Tumors
When genes that normally suppress tumor growth are themselves suppressed, cancer cells can grow and proliferate uncontrollably.
Tuesday, October 15, 2013
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Deciphering Inactive X Chromosomes
Untangling the Barr body of inactive X chromosomes valuable for understanding chromosome structure and gene expression.
Micro Disease-Detecting Senor Created
Researchers at McMaster University have created a microscopic disease-detecting sensor that can turn on to detect trace amounts of substances.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Understanding Treatment Resistant Melanoma
Researchers have determined how advanced melanoma becomes resistant; a development toward developing treatments.
Investigating ‘Black Box’ of Human Genetics
Investigations into inactive X chromosomes have shown unusual DNA repeat elements are essential for maintaining 3D structure.
Liquid Biopsies: DNA Size Matters
Study finds circulating tumour DNA can be distinguished from healthy DNA through fragment size identification.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!