Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

First Gene Therapy Study in Human Salivary Gland Shows Promise

Published: Tuesday, November 06, 2012
Last Updated: Tuesday, November 06, 2012
Bookmark and Share
Treatment proves safe and effective, helps cancer survivors with chronic dry mouth.

Gene therapy can be performed safely in the human salivary gland, according to scientists at the National Institute of Dental and Craniofacial Research (NIDCR), part of the National Institutes of Health.

This finding comes from the first-ever safety, or Phase I, clinical study of gene therapy in a human salivary gland. Its results, published this week in the Proceedings of the National Academy of Sciences, also show that the transferred gene, Aquaporin-1, has great potential to help head and neck cancer survivors who battle with chronic dry mouth. Aquaporin-1 encodes a protein that naturally forms pore-like water channels in the membranes of cells to help move fluid, such as occurs when salivary gland cells secrete saliva into the mouth.

These initial results clear the way for additional gene therapy studies in the salivary glands. Although sometimes overlooked, salivary glands present an ideal target for gene therapy. They are easily accessible and, once a gene is introduced, it has no obvious escape route into the bloodstream, where it can have unintended consequences.

“You cannot imagine how fulfilling it is to jot down an idea on a napkin in 1991 and then see it enter a clinical trial and help people.,” said Bruce Baum, D.M.D., Ph.D., lead author on the study and recently retired NIDCR scientist who spent the last 21 years moving gene therapy in the salivary glands from the research bench to the clinic. “Can a scientist ask for anything better?”

Baum's interest in helping head and neck cancer survivors dates to the early 1980s. While attending to patients in the NIDCR's Dry Mouth Clinic, Baum encountered numerous people with head and neck cancer who had received radiation therapy to shrink their tumors. The radiation, while effective in treating cancer, had inadvertently damaged nearby salivary glands, compromising their ability to secrete saliva into the mouth.

Baum said he was thoroughly frustrated at the time because he had no effective moisture-restoring treatments to offer most patients. They had beaten cancer, but the radiation had left them with a permanent parched sensation in their mouths that diminished their quality of life and often led to chronic oral problems, such as difficulty swallowing, inflammation, infection, bad breath, and pain.

In the early 1990s, as the first gene-therapy studies entered research clinics, Baum saw an opportunity to make a difference. An initial napkin sketch of the procedure and 15 years of research later, Baum and his colleagues had assembled a compelling scientific case in animal studies that the transferred Aquaporin-1 gene, once expressed, will create new water channels in the impermeable salivary gland cells and allow water to flow through them. After rigorous reviews by NIH and the U. S. Food and Drug Administration, the Phase I protocol was launched and the first patients treated in 2008.

The scientists gave 11 head and neck cancer survivors a single-dose injection of the Aquaporin-1 gene directly into one of their two parotid salivary glands, the largest of the major salivary glands. The gene was packaged in a disabled, non-replicating adenovirus, the cause of the common cold when intact but incapable of causing a cold in this case. As is standard in gene therapy studies, the virus served as the vector, or Trojan horse, to deliver the gene into the cells lining the salivary gland.

The scientists found that five participants had increased levels of saliva secretion, as well as a renewed sense of moisture and lubrication in their mouths, within the study's first 42 days, the period covered in this report. Of the six who didn't benefit from gene therapy, none had serious side effects. The most common side effect was a transient and relatively minor immune response against the disabled adenovirus.

“It is time to evaluate a different vector to deliver the Aquaporin-1 gene, one that will cause only a minimal immune response,” said Baum. “But these data will serve as stepping stones for other scientists to improve on this first attempt in the years ahead. The future for applications of gene therapy in the salivary gland is bright.”

The National Institute of Dental and Craniofacial Research is the Nation's leading funder of research on oral, dental, and craniofacial health. For more information about NIDCR and its programs, visit http://www.nidcr.nih.gov/.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Predicting Effective Drug Combinations For TB
Researchers analyzed gene regulatory networks to explain the effectiveness of an experimental drug combination against drug-resistant tuberculosis bacteria.
Wednesday, June 15, 2016
Genomic Data Commons Launched
Part of the National Cancer Moonshot, the GDC will centralize and standardize accessible data.
Tuesday, June 07, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
Decoding Ties Between Vascular Disease, Alzheimer’s
NIH consortium uses big data, team science to uncover complex interplay of factors.
Tuesday, March 15, 2016
Researchers Find Link Between Death of Tumor-Support Cells and Cancer Metastasis
Researchers at NIH have found that the lifespan of supportive cells in a tumor may control the spread of cancer.
Tuesday, February 23, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Revealing the Genetic Causes of Bowel Cancer
A landmark study has given the most detailed picture yet of the genetics of bowel cancer — the UK's fourth most common cancer.
The Epigenetic Influences of Chronic Pain
Researchers at Drexel University College of Medicine are aiming to identify new molecular mechanisms involved in pain.
Fighting Resistant Blood Cancer Cells
Biologists present new findings on chronic myeloid leukemia and possible therapeutic approaches.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
Mothers Obesity Could be Passed on in mtDNA
Obesity can predispose offspring in multiple generations to metabolic problems.
New Imaging Method Reveals Nanoscale Details about DNA
Enhancement to super-resolution microscopy shows orientation of individual molecules, providing a new window into DNA’s structure and dynamics.
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
Naked Mole Rat Exhibits “Extraordinary” Cancer Resistance
Scientists are getting closer to understanding the anti-cancer mechanism of the naked mole rat by making induced pluripotent stem cells.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!