Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Human Melanomas in Mice Predict Skin Cancer

Published: Thursday, November 08, 2012
Last Updated: Thursday, November 08, 2012
Bookmark and Share
Spread of human melanoma cells in mice correlates with clinical outcomes in patients, UTSW investigators find.

UT Southwestern Medical Center scientists led by Dr. Sean Morrison, director of the Children’s Medical Center Research Institute at UT Southwestern, have developed an innovative model for predicting the progression of skin cancer in patients.

In a new study published in Science Translational Medicine, Stage III human melanoma cells from 20 patients were implanted into specially selected mice with compromised immune systems.

Using this xenograft model, in which tissue is transplanted from one species to another, the institute’s team observed reproducible differences in the rate at which the cancer spread in the mice, or metastasized, that correlated with clinical outcomes in patients.

Dr. Morrison said human melanomas that metastasized efficiently in the mice eventually progressed to advanced, Stage IV disease in patients - spreading to distant organs, such as the brain, liver, or lungs. When the melanoma did not metastasize efficiently in the mice, it also did not form distant metastases in patients.

This xenograft model will make it possible to study the mechanisms that regulate disease progression and distant metastasis of melanomas in patients.

The researchers said they hope that their system will lead to new prognostic markers that identify patients at highest risk of disease progression as well as new therapies.

“We believe this is the only time in cancer biology that anyone has developed a xenograft model in which disease progression correlates with what happens in the patient,” said Dr. Morrison, senior author of the investigation and a Howard Hughes Medical Institute investigator at UT Southwestern.

Dr. Morrison continued, “The highly immune-compromised state of the mice makes it possible to observe the metastasis of human melanomas, and to study intrinsic differences among melanomas in their metastatic potential.”

Previous studies of cancer metastasis were limited by a lack of workable models in which scientists could study the progression of a patient’s cancer cells in laboratory animals in a way that correlated with clinical outcomes, he said.

But such correlation was clear in this study by the research institute, an innovative collaboration that melds the leading clinical resources of Children’s Medical Center with the outstanding research resources of UT Southwestern.

Melanomas that spread slowly and could not be detected in the blood of mice did not form distant tumors within 22 months in patients.

Melanomas that spread rapidly in mice did form distant tumors in patients within the same time frame, giving rise to circulating melanoma cells in the blood of the mice. This finding suggests that entry of melanoma cells into the blood is a step that limits the rate of distant metastasis.

“Ultimately we want to identify new drug targets,” Dr. Morrison said. “There are promising ideas coming out of this work that we hope will lead to clinical trials in melanoma.”

The research arose from the Morrison laboratory’s innovative techniques for studying neural crest stem cells - work that was recognized in 2004 with a Presidential Early Career Award for Scientists and Engineers.

Neural crest stem cells make melanocytes, a type of cell that can mutate into melanoma if exposed, for example, to excessive sunlight.

The Children’s Research Institute focuses on the interface of stem cell biology, cancer, and metabolism and will eventually include approximately 150 scientists in 15 laboratories.

The work of Dr. Morrison, who also leads the Hamon Laboratory for Stem Cell and Cancer Biology, focuses on adult stem cell biology and cancers of the blood, nervous system, and skin.

“We’re trying to do transformational science that not only changes scientific fields, but also creates new strategies for treating diseases,” Dr. Morrison said. “The goal is for our work to have a direct impact on the patient.”

Other UTSW researchers involved in the study were Drs. Elena Piskounova and Ugur Eskiocak, both postdoctoral researchers in the Children’s Research Institute. This work originated with lead author Dr. Elsa Quintana and Dr. Mark Shackleton in Dr. Morrison’s former lab at the University of Michigan.

Other key collaborators from the University of Michigan were Dr. Douglas R. Fullen, director of dermatopathology, and Dr. Timothy Johnson, director of the Multidisciplinary Melanoma Clinic.

“This animal model offers unprecedented opportunities for discovery efforts that could be translated into patient care,” Dr. Johnson said. “Dr. Morrison and I share a core mission to effectively treat melanoma, and that shared belief is the basis of the past, present, and future collaboration between UT Southwestern and the University of Michigan.”

Research support came from the Howard Hughes Medical Institute, the Melanoma Research Foundation, the Allen H. Blondy Research Fellowship at the University of Michigan, and the Cancer Prevention and Research Institute of Texas.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cell that Replenishes Heart Muscle Found by UT Southwestern Researchers
Researchers devise a new cell-tracing technique to detect cells that do replenish themselves.
Tuesday, June 23, 2015
Researchers Find Molecular Mechanisms within Fetal Lungs that Initiate Labor
Biochemists found that steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2) proteins control genes.
Tuesday, June 23, 2015
Researchers Discover Molecule that Accelerates Tissue Regeneration
Newly discovered molecule, SW033291 accelerate cell recovery following bone marrow transplants.
Friday, June 12, 2015
Mutations in Two Genes Linked to Familial Pulmonary Fibrosis and Telomere Shortening
PARN and RTEL1 genes strengthen the link between lung fibrosis and telomere dysfunction.
Tuesday, May 05, 2015
Scientists Identify Key Receptors Behind Development of AML
Blocking ITIM-receptor signaling in combination with conventional therapies may represent a novel strategy for AML treatment.
Saturday, May 02, 2015
Study Reveals Molecular Genetic Mechanisms Driving Breast Cancer Progression
The findings are published online and in the journal Molecular Cell.
Saturday, April 04, 2015
New Cyclotron Facility at UT Southwestern
Expands research opportunities and imaging capabilities for detecting, tracking cancer.
Friday, March 20, 2015
Acetate Supplements Shown to Speed Up Cancer Growth
A major compound produced in the gut by host bacteria.
Friday, February 20, 2015
MAGE Genes Provide Insight into Optimizing Chemotherapy
UT Southwestern Medical Center scientists have identified a new biomarker that could help identify patients who are more likely to respond to certain chemotherapies.
Tuesday, February 17, 2015
Researchers Identify ‘Achilles heel’ in Metabolic Pathway
Achilles heel could lead to new lung cancer treatments.
Saturday, February 14, 2015
Study Links Deficiency of Cellular Housekeeping Gene with Aggressive Forms of Breast Cancer
Research team studies genes involved in the autophagy process and their roles in cancer, aging, infections, and neurodegenerative diseases.
Saturday, January 31, 2015
Targeting The Cell’s ‘Biological Clock’
Researchers target the cell’s ‘biological clock’ in promising new therapy to kill cancer cells, shrink tumor growth.
Monday, January 05, 2015
Whole-Genome Sequencing Successfully Identifies Cancer-Related Mutations
UT Southwestern Medical Center cancer researchers have demonstrated that whole-genome sequencing can be used to identify patients’ risk for hereditary cancer.
Wednesday, December 24, 2014
Therapeutic Strategy May Treat a Childhood Neurological Disorder
Researchers have identified a possible therapy to treat neurofibromatosis type 1 or NF1.
Wednesday, December 17, 2014
Signaling Mechanism Could Be Target For Survival, Growth Of Tumor Cells In Brain Cancer
Non-canonical EGFR signalling shown to make glioblastoma tumor cells more resistant to chemotherapy treatment.
Monday, December 15, 2014
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
Web App Helps Researchers Explore Cancer Genetics
Brown University computer scientists have developed a new interactive tool to help researchers and clinicians explore the genetic underpinnings of cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!