Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Personalized Medicine From Genomics and Bioinformatics Highlighted at UCSF Genetics Symposium

Published: Thursday, November 15, 2012
Last Updated: Thursday, November 15, 2012
Bookmark and Share
Personalized medicine advances arising from genetic discoveries were the primary focus of wide-ranging presentations at the UCSF Institute for Human Genetics 2012 Symposium.

Speakers described clinical research that has resulted in the identification of gene mutations that often drive deadly breast cancers in black populations; explained how rare mutations responsible for devastating developmental defects in infants can now be discovered in studies of just a handful of individuals from affected families; offered a preview of results expected to emerge from studies of genes and environment in hundreds of thousands of patients through a Kaiser Permanente-UCSF project; and described technical advances that continue to increase scientists’ ability to identify links between DNA and disease.

All the speakers “are at the cutting edge of applying genomics and informatics to precision medicine,” said the institute’s director Neil Risch, MD, referring to an emerging trend in medicine in which treatment is tailored to the patient through a more precise diagnosis of disease.

At UCSF — a crucible of biotechnology and home to Nobel laureates who identified a role for the mutation of normal genes in cancer — major new initiatives are underway in clinical genetics and bioinformatics, Risch said.

The symposium led off with geneticist Eddy Rubin, MD, PhD, whose presentation demonstrated that genetic studies are being applied to human problems that extend even beyond the realm of medicine.

Rubin – a scientist who oversaw the sequencing and analysis of 13 percent of the human genome as part of the original Human Genome Project – has taken his research from studying abnormalities in DNA “enhancers” that may contribute to disease susceptibility or birth defects, to cutting global greenhouse gas emissions by manipulating gut microbes in sheep.

Early in his career, Rubin completed a medical genetics fellowship under the late Charles Epstein, MD, a founding director of the UCSF Institute for Human Genetics and a driving force behind medical genetics becoming an accredited medical specialty. Rubin was featured at the symposium as the named 2012 Charles J. and Lois B. Epstein Visiting Professor at UCSF.

Rubin, director of the Department of Energy’s Joint Genome Institute and director of the Genome Sciences Division at Lawrence Berkeley National Laboratory, is a pioneer in exploring DNA beyond genes, which until recently was a poorly understood realm that may nonetheless prove to be key to understanding fundamental aspects of biology and disease.

Researchers were for decades focused on DNA that encodes proteins – the genes. But the sequencing and analysis of the genome has revealed that genes account for less than 2 percent of the DNA on the 46 human chromosomes. Within the universe of DNA, the stuff beyond the genes is comparable to the poorly understood dark matter of the cosmos.

DNA 'Enhancers' Guide Development

Rather than working under the lamppost where the genes are, Rubin explores DNA within these dark regions of the chromosomes. He focuses on bits of DNA called “enhancers,” which play an important role in determining how much protein is made from a gene at a particular time and place within an organism – with great implications for how a creature develops.

Rubin wondered: Could abnormal enhancers or unusual variations in specific enhancers be playing a role in disease susceptibility or birth defects?

Some enhancers are similar across many organisms, while others are more specific to humans or to other species, Rubin said. Within the cell’s DNA, the enhancers often are nowhere near the genes they affect, but Rubin has developed new ways to find them.

Enhancers switch on and off as an organism develops, and some are uniquely activated within particular tissues. Many enhancers are the same in different species, “conserved” through the course of evolution.

But the enhancers that switch on later in development are more likely to be unique to that species. “Early in development, we see very conserved enhancers, but later on during development we see enhancers that are not conserved,” Rubin said.

Thus the developing human heart, which forms early during embryogenesis, shares many enhancers with the developing hearts of other species. Brains, which form later, share fewer enhancers across species.

Working with mice, Rubin has identified 4,400 enhancers involved in shaping the face and the bones of the head and found that some abnormal enhancer DNA appears to play a role in facial abnormalities. “We’re seeing subtle effects … with many variants causing small effects,” he said.

Sheep Flatulence and Global Warming

At the DOE Joint Genome Institute, Rubin has begun to devote more of his research effort to the study of global greenhouse gases, specifically the contributions from livestock such as cows and sheep. These barnyard beasts harbor gut microbes that produce methane while helping the sheep to digest grass and other sources of cellulose.

As countries with large populations become wealthier, their citizens not only aspire to drive more cars and own more appliances, they also want to eat more meat, Rubin said, which is likely to lead to yet more greenhouse gas production as more of these domestic animals are raised to meet the growing demand.

In New Zealand, Rubin said, “They do believe in climate change, and they are putting in place a carbon tax, and they’re going to be charging their sheep farmers. So the sheep farmers are very interested in how the sheep produce methane and whether they can mitigate it at all.”

Rubin and his New Zealand colleagues studied 23 age- and size-matched members of a flock of sheep raised in the same pasture. The gut, or more precisely the “rumen” of a sheep contains massive amounts of bacteria, protozoa and fungi that ferment cellulose in grass and convert it into nutrients for the sheep. But sheep also house another type of microbe called Archaea. Archaea produce methane, which the sheep burp and fart out, Rubin said.

Genetic analysis permitted the researchers to figure out why methane emissions varied among sheep and to determine how Archaea might be a suitable target of efforts to lower methane release.

Rubin and colleagues did not find differences in the numbers of methane-producing microbes between the high-methane and low-methane producing sheep, but they did find that the methane-producing microbes within high-methane-emitting sheep were better at making methane, as evidenced by the increased activation of genes involved in the biochemical steps of methane production.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
Researchers Change Cell Types by Flipping a Single Switch
New findings have identified a method for changing one cell type into another in a process called forced transdifferentiation.
Friday, December 06, 2013
Scientists Pinpoint Cell Type and Brain Region Affected by Gene Mutations in Autism
UCSF-led study zeroes in on when and where disrupted genes exert effects.
Tuesday, November 26, 2013
Digging Deeper Into Cancer
What a pathologist looks for in a Pap test sample, but hopes not to find, are oddly shaped cells with abnormally large nuclei. The same is true for prostate and lung cancer biopsies.
Tuesday, November 19, 2013
Nanotech Method Show Promise Against Pancreatic Cancer
Researchers at UCLA's Jonsson Comprehensive Cancer Center have developed a new technique for fighting deadly and hard-to-treat pancreatic cancer.
Monday, November 18, 2013
Researchers Un-Junking Junk DNA
A study shines a new light on molecular tools our cells use to govern regulated gene expression.
Wednesday, November 13, 2013
Fast-Mutating DNA Sequences Shape Early Development
What does it mean to be human? According to scientists the key lies, ultimately, in the billions of lines of genetic code that comprise the human genome.
Wednesday, November 13, 2013
Did Inefficient Cellular Machinery Evolve to Fight Viruses and Jumping Genes?
UCSF scientist poses new theory on origins of eukaryotic gene expression.
Monday, November 11, 2013
Powerful Anti-Cancer Compound Safely Delivered
Researchers have discovered a way to effectively deliver staurosporine (STS).
Tuesday, October 22, 2013
New Insights into How Proteins Regulate Genes
Researchers have developed a new way to parse and understand how special proteins called "master regulators" read the genome, and consequently turn genes on and off.
Monday, October 21, 2013
Scientific News
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Fatty Liver Disease and Scarring Have Strong Genetic Component
Researchers say that hepatic fibrosis, which involves scarring of the liver that can result in dysfunction and, in severe cases, cirrhosis and cancer, may be as much a consequence of genetics as environmental factors.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Finding Links and Missing Genes
A catalogue of large-scale genetic changes around the world.
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
A Natural History of Neurons
Diverse mutations reveal lineage of brain cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos