Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A*STAR Scientists Identify Potential Drug Target for Inflammatory Diseases Including Cancers

Published: Thursday, November 22, 2012
Last Updated: Thursday, November 22, 2012
Bookmark and Share
This discovery holds the potential to reduce healthcare costs for many common inflammatory diseases such as cancer and diabetes.

A*STAR scientists have identified the enzyme, telomerase, as a cause of chronic inflammation in human cancers.

Chronic inflammation is now recognized as a key underlying cause for the development of many human cancers, autoimmune disorders, neurodegenerative diseases, and metabolic diseases such as diabetes.

This enzyme, which is known to be responsible for providing cancer cells the endless ability to divide, is now found to also jumpstart and maintain chronic inflammation in cancers.

In identifying this enzyme, inflammation can be prevented or reduced, and the common ailments can be alleviated. This discovery has considerable impact on healthcare because developing drugs to target telomerase can greatly reduce healthcare costs.

Currently, the annual costs and expenses associated with cancer and metabolic diseases such as diabetes amount to about $132 billion in the US alone.

Although many safe and effective anti-inflammatory drugs such as aspirin are currently available on the market, these drugs sometimes have side effects because blocking inflammation is typically detrimental to normal physiology.

Hence there exists a need for the development of cost-effective drugs that are targeted, so as to minimize side effects.

This collaborative research was conducted by scientists at A*STAR's Institute of Molecular and Cell Biology (IMCB) led by Assoc Prof Vinay Tergaonkar, A*STAR's Genome Institute of Singapore (GIS) and National University of Singapore.

Other clinical collaborators include Cancer Science Institute of Singapore and Duke-NUS Graduate Medical School.

The research findings were published on Nov. 18, 2012, in the prestigious scientific journal, Nature Cell Biology.

The team identified that telomerase directly regulates the production of inflammatory molecules that are expressed by NF-kB, a known master regulator of chronic inflammation. These molecules are critical for inflammation and cancer progression.

By inhibiting telomerase activity in primary cancer cells obtained from patient samples, the scientists found that levels of IL-6, an inflammatory molecule known to be a key driver of human cancers, was reduced in expression as well.

This is an important breakthrough that shows how targeting telomerase with drugs could potentially reduce inflammation, and hence get rid of cancer cells.

Dr Tergaonkar said, "These findings provide a unifying explanation for a decade worth of observations from leading laboratories in the field which show that chronic inflammation and telomerase hyperactivity co-exist in over 90 percent of human cancers. What we show that these two activities are actually interdependent. They also may lead to potentially novel drugs that will target a range of human ailments with inflammation as an underlying cause, which range from arthritis to cancer."

Prof Hong Wan Jin, Executive Director of IMCB, said, "The discovery speaks for the exceptional power of identifying novel mechanisms that have translational potential, through close collaborations among scientists in different A*STAR institutes, as well as to bring together both basic and clinical research scientists in Singapore. I am confident that we can expect more discoveries like this from Dr Tergaonkar's team."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A*STAR Scientists Discover Gene Critical for Proper Brain Development
This gene accounts for the size of the human brain and potentially our superior cognitive abilities.
Friday, December 26, 2014
Gene Associated with an Aggressive Breast Cancer Identified
Over-expressed gene in triple negative breast cancer offers new diagnostics for risk assessment.
Wednesday, December 03, 2014
Novel Gene Predicts Both Breast Cancer Relapse and Response to Chemotherapy
A predictive marker discovered by scientists at A*STAR and NUS could help doctors classify breast cancer patients for more effective treatment.
Thursday, August 21, 2014
New Tool to Study Critical Protein Interaction in Cancer Research
A*STAR scientists used fluorescent molecular rotors to study protein-protein interactions involving p53 and MDM2 in cells.
Thursday, July 03, 2014
New Possibilities for Leukaemia Therapy with a Novel Mode of Cancer Cell Recognition
A new class of lipids in human leukaemia cells trigger an immune response to kill the cells.
Thursday, June 26, 2014
Nature and Nurture: Baby's Development is Affected by Genes and Conditions in the Womb
First attempt to discover how genetic and environmental factors affect the human epigenome.
Tuesday, April 29, 2014
Elephant Shark Genome Provides New Insights into Bone Formation in Humans
A*STAR-led international consortium completely decodes the first shark-family member genome.
Thursday, January 09, 2014
A*STAR Scientists Discover Novel Hormone Essential for Heart Development
This unusual discovery could aid cardiac repair and provide new therapies to common heart diseases and hypertension.
Friday, December 06, 2013
A*STAR and NUS Launch Joint Centre
The S$148 million centre will study the role of nutrition and early development in health and disease in Asia.
Thursday, October 10, 2013
Scientists Find a Promising Way To Boost The Body’s Immune Surveillance Via p53
Researchers at A*STAR have discovered a new mechanism involving p53, the famous tumour suppressor, to fight against aggressive cancers.
Thursday, September 26, 2013
Singapore Scientists Discover New RNA Processing Pathway Important in hESCs
Discovery of RNA regulator could lead to a better understanding of diseases like cancer and influenza.
Monday, September 09, 2013
Scientists at GIS Discover Gene that Controls the Birth of Neurons
Discovery of long non-coding RNA's role in neurogenesis may lead to cures for diseases such as Alzheimer's disease.
Thursday, August 29, 2013
A*STAR Scientist Alex Matter Awarded Prestigious Szent-Gyorgyi Prize For Progress In Cancer Research
National Foundation for Cancer Research honours Professor Alex Matter with esteemed award for groundbreaking cancer pill that gives leukaemia patients a new lease of life.
Friday, April 05, 2013
A*STAR Scientists Make Discovery of Cell Nucleus Structure Crucial to Understanding Diseases
Genes relocated from their correct position in the nucleus cause them to malfunction and this may lead to the heart, blood vessels and muscles breaking down.
Friday, February 08, 2013
A*STAR's GIS Collaborates with GSK to Further Research on Lung Cancer
Partnership will advance both organizations' joint efforts towards finding a cure for the disease.
Thursday, January 31, 2013
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!