Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Cellular Dynamics Launches MyCell™ Services

Published: Tuesday, November 27, 2012
Last Updated: Tuesday, November 27, 2012
Bookmark and Share
MyCell services include novel iPS cell line reprogramming, genetic engineering and differentiation of iPS cells into iCell® terminal tissue cells.

Cellular Dynamics International, Inc. (CDI) has announced the launch of its MyCell™ Services.

“CDI’s mission is to be the top developer and manufacturer of standardized human cells in high quantity, quality and purity and to make these cells widely available to the research community. Our MyCell Services provide researchers with unprecedented access to the full diversity of human cellular biology,” said Bob Palay, CDI Chief Executive Officer.

“The launch of MyCell Services furthers CDI founder and stem cell pioneer Jamie Thomson’s vision to enable scientists worldwide to easily access the power of iPSC technology, thus driving breakthroughs in human health.”

Over the past 2 years, CDI has launched iCell Cardiomyocytes, iCell Neurons and iCell Endothelial Cells for human biology and drug discovery research.

MyCell Services leverage CDI’s prior investment in building an industrial manufacturing platform that can handle the parallel production of multiple iPSC lines and tissue cells, manufacturing billions of cells daily.

Chris Parker, CDI Chief Commercial Officer, commented, “Not all studies requiring human cells can be accomplished by using cells from a limited set of normal, healthy donors. Researchers may need iPS cells or tissue cells derived from specific ethnic or disease populations, and MyCell Services enable them to take advantage of our deep stem cell expertise and robust industrial manufacturing pipeline to do so. Previously, scientists had to create and differentiate iPS cells themselves. Such activities consume significant laboratory time and resources, both of which could be better applied to conducting experiments that help us better understand human biology. CDI’s MyCell Services enable scientists to re-direct those resources back to their experiments.”

CDI pioneered the technique to create iPS cells from small amounts of peripheral blood, although iPS cells can be created from other tissue types as well.

Additionally, CDI’s episomal reprogramming method is “footprint-free,” meaning no foreign DNA is integrated into the genome of the reprogrammed cells, alleviating safety concerns over the possible use of iPS cells in therapeutic settings.

These techniques have been optimized for manufacture of over 2 billion human iPS cells a day, and differentiated cells at commercial scale with high quality and purity to match the research needs.

Modeling Genetic Diversity

CDI has several projects already underway using MyCell Services to model genetic diversity of human biology. The Medical College of Wisconsin and CDI received a $6.3M research grant from the National Heart, Lung, and Blood Institute (NHLBI), announced July 2011, for which CDI’s MyCell Services will reprogram an unprecedented 250 iPS cell lines from blood samples collected from Caucasian and African-American families in the Hypertension Genetic Epidemiology Network (HyperGEN) study.

In addition, MyCell Services will differentiate these iPS cells into heart cells to investigate the genetic mechanisms underlying Left Ventricular Hypertrophy, an increase of the size and weight of the heart that is a major risk factor for heart disease and heart failure.

Researchers are also using CDI’s MyCell Services to generate iPS cells and liver cells from individuals with drug induced liver injury (DILI), toward an eventual goal of identifying genetic factors linked to idiosyncratic liver toxicity.

"The most problematic adverse drug event is sudden and severe liver toxicity that may occur in less than one in one thousand patients treated with a new drug, and thus may not become evident until the drug is marketed. This type of liver toxicity is not predicted well by usual preclinical testing, including screening in liver cultures derived from random human donors,” said Paul B. Watkins, M.D., director of with The Hamner - University of North Carolina Institute for Drug Safety Sciences.

Watkins continued, “The ability to use iPS cell technology to prepare liver cultures from patients who have actually experienced drug-induced liver injury, and for whom we have extensive genetic information, represents a potential revolution in understanding and predicting this liability."

Screening Human Disease

While most diseases are multi-systemic, focus typically centers on only one organ system. For example, congenital muscular dystrophy (CMD) is a group of rare genetic diseases with a focus on skeletal muscle, yet other systems, including heart, eye, brain, diaphragm and skin, can be involved.

Understanding the molecular mechanisms underlying complex disease phenotypes requires access to multiple tissue types from a single patient. While some systems are readily accessible for taking a biopsy sample, for example skin, other organs are not.

Cure CMD, a nonprofit organization focused upon promoting CMD research, treatments and clinical trials, with additional support from The Kettering Family Foundation, has utilized CDI’s MyCell Services to create iPS cell lines from CMD patients, with the eventual goal of manufacturing iPS cell-derived cardiomyocytes and neurons.

Dr. Anne Rutkowski, Cure CMD Chairman, stated, "Translation of hits from HTS drug screens using hundreds of patient-derived iPS cell lines in the organ cell of interest may revolutionize treatment discovery for rare diseases. While a carefully validated, targetable mechanism is needed, these types of screens can substantially decrease overall costs as iPS cells are renewable resources, expediting possible treatment discovery and identifying epigenetic disease modifiers to develop more homogeneous cohorts for clinical trials. We believe the development of iPS cell lines across the CMDs will support forward momentum and provide scientists with additional resources to study these diseases."

MyCell Services were also used in recently published research by David Gamm, PhD, Assistant Professor of Ophthalmology and Visual Sciences in the UW School of Medicine and Public Health.

For this study, CDI reprogrammed iPS cells from a standard blood draw from patients with retinitis pigmentosa, a group of genetic defects that causes blindness. Gamm’s lab then successfully differentiated the iPS cells into retinal cells for further study.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Junying Yu, Leading Stem Cell Researcher, Joins Cellular Dynamics International
Dr. Yu’s scientific will help accelerate the company to harness the power of iPS cells to reproducibly differentiate into essential cell types.
Friday, July 24, 2009
Cellular Dynamics International Reprograms Blood Cells into Stem Cells
Findings to be presented at ISSCR Annual Meeting demonstrate that any stored blood sample is a candidate for iPS cell reprogramming.
Wednesday, July 15, 2009
Cellular Dynamics International and Roche Expand Existing Cardiotoxicity Screening Agreement
The two-year collaboration aims to enhance drug safety testing in order to bring promising therapies to patients.
Thursday, July 02, 2009
Scientific News
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos