Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Study Suggests Immune System Could Play a Central Role in AMD

Published: Thursday, November 29, 2012
Last Updated: Thursday, November 29, 2012
Bookmark and Share
First epigenetic study reveals the molecular mechanisms for any eye disease.

Changes in how genes in the immune system function may result in age-related macular degeneration (AMD), the leading cause of visual impairment in older adults, based on preliminary research conducted by National Institutes of Health (NIH) investigators.

"Our findings are epigenetic in nature, meaning that the underlying DNA is normal but gene expression has been modified, likely by environmental factors, in an adverse way," said Dr. Robert Nussenblatt, chief of the National Eye Institute (NEI) Laboratory of Immunology. Environmental factors associated with AMD include smoking, diet, and aging.

Dr. Nussenblatt continued, "This is the first epigenetic study revealing the molecular mechanisms for any eye disease."

The study identified decreased levels of DNA methylation, a chemical reaction that switches off genes, on the interleukin-17 receptor C gene (IL17RC).

The lack of DNA methylation led to increased gene activity and, in turn, increased levels of IL17RC proteins in patients with AMD. IL17RC is a protein that promotes immune responses to infections, such as fungal attacks.

The study, conducted by research teams from the NEI and other NIH institutes, including the National Heart, Lung, and Blood Institute and the National Center for Complementary and Alternative Medicine; the University of Melbourne, Australia; and Oregon Health and Science University, appears in the Nov. 29 issue of Cell Reports.

"Our study also suggests IL17- and IL17RC-mediated immune responses can be crucial in causing AMD," added Dr. Lai Wei, also of NEI's Laboratory of Immunology and first author on the paper. "By measuring IL17RC gene activity in at-risk patients, we have also potentially identified an early method to detect AMD."

AMD damages the light-sensitive cells of the macula, the central part of the retina that allows us to see fine visual detail.

As the disease progresses, patients encounter great difficulty reading, driving, or performing hobbies and tasks that require hand-eye coordination.

Treatments exist to prevent severe vision loss in certain types of advanced AMD but none prevent or cure the disease. Currently, 2 million Americans have advanced AMD and another 7 million have intermediate stages.

Recent studies have identified several genes with alterations that increase the risk of developing the disease. In addition, environmental risk factors have also been suggested as possible causes of the disease.

One explanation may be that environmental exposures influence DNA methylation, which regulates gene expression. Changes in this process may result in the production of too much or too little of a gene’s protein, leading to cellular dysfunction and disease.

Changes in DNA methylation have been implicated in cancer, lupus, multiple sclerosis, and many other diseases.

To test whether changes in DNA methylation might play a role in AMD, the investigators evaluated three pairs of twins - one pair identical and two pairs fraternal - where only one of the siblings had AMD.

Identical twins have the same genetic makeup while fraternal twins share about half of their DNA. Because of their similar genetic backgrounds, identical and fraternal twins can be helpful in studying the differences between the effects of genetics and the environment.

When compared with the unaffected twins, methylation patterns were altered in 231 genes of affected twins. This finding is consistent with the hypothesis that environmental exposures may epigenetically regulate expression of many genes and lead to AMD.

Among the 231 genes, the investigators found that DNA methylation was absent in a region of the IL17RC gene in twins with AMD.

The lack of methylation in the IL17RC gene led to increased gene activity and, in turn, increased levels of its protein in circulating blood.

The investigators further validated these findings by comparing seven siblings with and without AMD as well as 202 AMD patients and 96 control subjects without the disease. These studies also found increased IL17RC levels in circulating blood and, most importantly, in the retina of patients with AMD but not controls.

Based on these results, the authors propose that chronic increased levels of the IL17RC protein in the retina likely promote inflammation and recruitment of immune cells that damage the retina and lead to AMD.

“This study strongly implicates epigenetic DNA methylation as another crucial biological pathway for understanding the molecular basis of AMD,” according to Nussenblatt.

The investigators next plan to evaluate what environmental factors may be responsible for the regulation of IL17RC and how the epigenetic regulation leading to the chronic inflammation in AMD patients can be reversed by novel therapies. They will also evaluate the role of epigenetics in other eye diseases.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Public Support for National Study
Survey shows the majority of respondents support or show willingness for national precision medicine study.
Thursday, August 18, 2016
Schizophrenia, Autism Share Genetic Causes
Monkey brain developmental atlas pinpoints when, where genes activate.
Tuesday, August 16, 2016
How Breast Cancers Resist Chemotherapy
Researchers discovered an unexpected way that breast cancers cells with mutant BRCA1 or BRCA2 genes acquire drug resistance and evade chemotherapies.
Wednesday, August 10, 2016
Mutations Linked to Immunotherapy Resistance
Researchers uncover mutations in tumors of three patients with advanced melanoma that allowed the tumors to become resistant to the immune checkpoint inhibitor pembrolizumab (Keytruda®).
Tuesday, August 09, 2016
Genetic Cause of Rare Pediatric Neuropathy Identified
NIH mouse study identifies the mechanism responsible for a rare form of pediatric neuropathy.
Thursday, August 04, 2016
Depression Genetics Insight from Crowd-Sourced Data
Genome sites liked to depression have been discovered from data shared by people who had purchased their genetic profiles online.
Tuesday, August 02, 2016
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Predicting Effective Drug Combinations For TB
Researchers analyzed gene regulatory networks to explain the effectiveness of an experimental drug combination against drug-resistant tuberculosis bacteria.
Wednesday, June 15, 2016
Genomic Data Commons Launched
Part of the National Cancer Moonshot, the GDC will centralize and standardize accessible data.
Tuesday, June 07, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Scientific News
Breast Cancer Cells Found To Switch Molecular Characteristics
Spontaneous interconversion between HER2-positive and HER2-negative states could contribute to progression, treatment resistance in breast cancer.
Some Breast Cancer Patients With Low Genetic Risk Could Skip Chemotherapy
Genetic test can help predict survival and guide treatment options.
Emerging Model of Cancer
Cancer acts cooperatively, making individual decisions but acting in unison; this insight is being used to create a computer model of cancer.
Biological Barcodes Using CRISPR
Using genome editing tools, researchers are getting closer to understand differentiation of various cell types during development.
Controlling DNA Repair
Scientists discover that DNA repair outcomes following CRISPR-Cas9 cleaving are non-random and can be harnessed to produce desired effects.
Demonstrating LNP Delivery of CRISPR Components
Intellia has presented data demonstrating in vivo gene editing ising liquid nanoparticles (LNPs) to deliver CRISPR/Cas9.
Gene Therapy Via Ultrasound
Research into a gene therapy approach called sonoporation could help combat heart disease and cancer.
Creating Embryos with 'Heteroplasmy'
New discovery in genetic research could lead to treatments for mitochondrial diseases.
Proteins Preserve Vital Genetic Data
Research has shown how two key proteins bring about the oragnization of chromosomes and our genome.
Novel MRI Technique Distinguishes Healthy Prostate Tissue from Cancer
The UTSW researchers have determined that glucose stimulates release of the zinc ions from inside epithelial cells, which they could then track on MRIs.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!