Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Study Suggests Immune System Could Play a Central Role in AMD

Published: Thursday, November 29, 2012
Last Updated: Thursday, November 29, 2012
Bookmark and Share
First epigenetic study reveals the molecular mechanisms for any eye disease.

Changes in how genes in the immune system function may result in age-related macular degeneration (AMD), the leading cause of visual impairment in older adults, based on preliminary research conducted by National Institutes of Health (NIH) investigators.

"Our findings are epigenetic in nature, meaning that the underlying DNA is normal but gene expression has been modified, likely by environmental factors, in an adverse way," said Dr. Robert Nussenblatt, chief of the National Eye Institute (NEI) Laboratory of Immunology. Environmental factors associated with AMD include smoking, diet, and aging.

Dr. Nussenblatt continued, "This is the first epigenetic study revealing the molecular mechanisms for any eye disease."

The study identified decreased levels of DNA methylation, a chemical reaction that switches off genes, on the interleukin-17 receptor C gene (IL17RC).

The lack of DNA methylation led to increased gene activity and, in turn, increased levels of IL17RC proteins in patients with AMD. IL17RC is a protein that promotes immune responses to infections, such as fungal attacks.

The study, conducted by research teams from the NEI and other NIH institutes, including the National Heart, Lung, and Blood Institute and the National Center for Complementary and Alternative Medicine; the University of Melbourne, Australia; and Oregon Health and Science University, appears in the Nov. 29 issue of Cell Reports.

"Our study also suggests IL17- and IL17RC-mediated immune responses can be crucial in causing AMD," added Dr. Lai Wei, also of NEI's Laboratory of Immunology and first author on the paper. "By measuring IL17RC gene activity in at-risk patients, we have also potentially identified an early method to detect AMD."

AMD damages the light-sensitive cells of the macula, the central part of the retina that allows us to see fine visual detail.

As the disease progresses, patients encounter great difficulty reading, driving, or performing hobbies and tasks that require hand-eye coordination.

Treatments exist to prevent severe vision loss in certain types of advanced AMD but none prevent or cure the disease. Currently, 2 million Americans have advanced AMD and another 7 million have intermediate stages.

Recent studies have identified several genes with alterations that increase the risk of developing the disease. In addition, environmental risk factors have also been suggested as possible causes of the disease.

One explanation may be that environmental exposures influence DNA methylation, which regulates gene expression. Changes in this process may result in the production of too much or too little of a gene’s protein, leading to cellular dysfunction and disease.

Changes in DNA methylation have been implicated in cancer, lupus, multiple sclerosis, and many other diseases.

To test whether changes in DNA methylation might play a role in AMD, the investigators evaluated three pairs of twins - one pair identical and two pairs fraternal - where only one of the siblings had AMD.

Identical twins have the same genetic makeup while fraternal twins share about half of their DNA. Because of their similar genetic backgrounds, identical and fraternal twins can be helpful in studying the differences between the effects of genetics and the environment.

When compared with the unaffected twins, methylation patterns were altered in 231 genes of affected twins. This finding is consistent with the hypothesis that environmental exposures may epigenetically regulate expression of many genes and lead to AMD.

Among the 231 genes, the investigators found that DNA methylation was absent in a region of the IL17RC gene in twins with AMD.

The lack of methylation in the IL17RC gene led to increased gene activity and, in turn, increased levels of its protein in circulating blood.

The investigators further validated these findings by comparing seven siblings with and without AMD as well as 202 AMD patients and 96 control subjects without the disease. These studies also found increased IL17RC levels in circulating blood and, most importantly, in the retina of patients with AMD but not controls.

Based on these results, the authors propose that chronic increased levels of the IL17RC protein in the retina likely promote inflammation and recruitment of immune cells that damage the retina and lead to AMD.

“This study strongly implicates epigenetic DNA methylation as another crucial biological pathway for understanding the molecular basis of AMD,” according to Nussenblatt.

The investigators next plan to evaluate what environmental factors may be responsible for the regulation of IL17RC and how the epigenetic regulation leading to the chronic inflammation in AMD patients can be reversed by novel therapies. They will also evaluate the role of epigenetics in other eye diseases.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Predicting Effective Drug Combinations For TB
Researchers analyzed gene regulatory networks to explain the effectiveness of an experimental drug combination against drug-resistant tuberculosis bacteria.
Wednesday, June 15, 2016
Genomic Data Commons Launched
Part of the National Cancer Moonshot, the GDC will centralize and standardize accessible data.
Tuesday, June 07, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
Decoding Ties Between Vascular Disease, Alzheimer’s
NIH consortium uses big data, team science to uncover complex interplay of factors.
Tuesday, March 15, 2016
Researchers Find Link Between Death of Tumor-Support Cells and Cancer Metastasis
Researchers at NIH have found that the lifespan of supportive cells in a tumor may control the spread of cancer.
Tuesday, February 23, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Deciphering Inactive X Chromosomes
Untangling the Barr body of inactive X chromosomes valuable for understanding chromosome structure and gene expression.
Micro Disease-Detecting Senor Created
Researchers at McMaster University have created a microscopic disease-detecting sensor that can turn on to detect trace amounts of substances.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Understanding Treatment Resistant Melanoma
Researchers have determined how advanced melanoma becomes resistant; a development toward developing treatments.
Investigating ‘Black Box’ of Human Genetics
Investigations into inactive X chromosomes have shown unusual DNA repeat elements are essential for maintaining 3D structure.
Liquid Biopsies: DNA Size Matters
Study finds circulating tumour DNA can be distinguished from healthy DNA through fragment size identification.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!