Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Building with DNA Bricks

Published: Friday, November 30, 2012
Last Updated: Friday, November 30, 2012
Bookmark and Share
Harvard’s Wyss Institute creates versatile 3-D nanostructures.

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University have created more than 100 3-D nanostructures using DNA building blocks that function like Lego bricks — a major advance from the two-dimensional structures the same team built a few months ago.

In effect, the advance means researchers went from being able to build a flat wall of Legos to building a house. The new method, featured as a cover research article in the Nov. 30 issue of Science, is the next step toward using DNA nanotechnologies for more sophisticated applications than ever possible before, such as “smart” medical devices that target drugs selectively to disease sites, programmable imaging probes, templates for precisely arranging inorganic materials in the manufacturing of next generation computer circuits, and more.

The nanofabrication technique, called “DNA-brick self-assembly,” uses short, synthetic strands of DNA that work like interlocking Lego bricks.  It capitalizes on the ability to program DNA to form into predesigned shapes thanks to the underlying “recipe” of DNA base pairs: A (adenosine) only binds to T (thymine), and C (cytosine) only binds to G (guanine).

Earlier this year, the Wyss team reported in Nature how they could create a collection of two-dimensional shapes by stacking one DNA brick (42 bases in length) upon another.

But there’s a “twist” in the new method required to build in 3-D.

The trick is to start with an even smaller DNA brick (32 bases in length), which changes the orientation of every matched-up pair of bricks to a 90-degree angle — giving every two Legos a 3-D shape. In this way, the team can use these bricks to build “out” in addition to “up,” and eventually form 3-D structures, such as a 25-nanometer solid cube containing hundreds of bricks. The cube becomes a “master” DNA “molecular canvas”; in this case, the canvas was composed of 1,000 “voxels,” which correspond to eight base-pairs and measure about 2.5 nanometers in size — meaning this is architecture at its tiniest.

The master canvas is where the modularity comes in: By simply selecting subsets of specific DNA bricks from the large cubic structure, the team built 102 3-D structures with sophisticated surface features, as well as intricate interior cavities and tunnels.

“This is a simple, versatile, and robust method,” says Peng Yin, Wyss core faculty member and senior author on the study.

Another method used to build 3-D structures, called DNA origami, is tougher to use to build complex shapes, Yin said, because it relies on a long “scaffold” strand of DNA that folds to interact with hundreds of shorter “staple” strands — and each new shape requires a new scaffold routing strategy and hence new staples. In contrast, the DNA brick method does not use any scaffold strand and therefore has a modular architecture; each brick can be added or removed independently.

“We are moving at lightning speed in our ability to devise ever more powerful ways to use biocompatible DNA molecules as structural building blocks for nanotechnology, which could have great value for medicine as well as nonmedical applications,” says Wyss Institute Director Donald Ingber.

The research team led by Yin, who is also an assistant professor of systems biology at Harvard Medical School (HMS), included Wyss postdoctoral fellow Yonggang Ke and Wyss graduate student Luvena Ong. Another contributor was Wyss core faculty member William Shih, who also holds appointments at HMS and at the Harvard-affiliated Dana-Farber Cancer Institute. To learn more about the team’s work, visit its website.

The research was supported by the Office of Naval Research, the Army Research Office, the National Science Foundation, the National Institutes of Health, and the Wyss Institute for Biologically Inspired Engineering at Harvard University.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Harvard Licenses Genotyping Platform
Novel approach aids development of drug resistance testing products for HIV.
Tuesday, May 24, 2016
Into Thin Air
Lower oxygen intake could be used to prevent mitochondrial diseases from forming.
Tuesday, March 01, 2016
High Poverty’s Effect on Childhood Leukemia
Patients more likely to suffer early relapses, which can be harder to treat.
Thursday, February 25, 2016
A Cancer’s Surprise Origins, Caught in Action
First demonstration of a melanoma arising from a single cell.
Monday, February 01, 2016
Seeing Hope
Gene therapy/drug combo restores some vision in mice with optic nerve injury.
Wednesday, January 20, 2016
Cell Memory Loss Enables the Production of Stem Cells
Scientists identify a molecular key that helps maintain identity and prevents the conversion of adult cells into iPS cells.
Thursday, December 17, 2015
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Tuesday, November 24, 2015
Exposure to Pesticides In Childhood Linked to Cancer
Young children who are exposed to insecticides inside their homes may be slightly more at risk for developing leukemia or lymphoma during childhood, according to a meta-analysis by Harvard T.H. Chan School of Public Health researchers.
Thursday, September 24, 2015
So Long, Snout
Research helps answer how birds got their beaks.
Thursday, August 20, 2015
Delivering Hope in Ovarian Cancer
Gene therapy blocked chemoresistant tumor growth in mice.
Tuesday, August 11, 2015
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Friday, July 31, 2015
Beyond Average
Researchers have created new platforms to genetically barcode tens of thousands of cells at a time allowing unprecedented detail to be uncovered when studying whole tissue samples.
Tuesday, May 26, 2015
One Molecule at a Time
The ability to study single molecules provides tangible targets for personalised medicine.
Monday, May 18, 2015
Diabetes’ Genetic Variety
Researchers find nine variants that can greatly increase risk from disease.
Friday, September 19, 2014
Cancer Vaccine Begins Phase I Clinical Trials
Cross-disciplinary team brings novel therapeutic cancer vaccine to human clinical trials.
Wednesday, September 11, 2013
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Deciphering Inactive X Chromosomes
Untangling the Barr body of inactive X chromosomes valuable for understanding chromosome structure and gene expression.
Micro Disease-Detecting Senor Created
Researchers at McMaster University have created a microscopic disease-detecting sensor that can turn on to detect trace amounts of substances.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Understanding Treatment Resistant Melanoma
Researchers have determined how advanced melanoma becomes resistant; a development toward developing treatments.
Investigating ‘Black Box’ of Human Genetics
Investigations into inactive X chromosomes have shown unusual DNA repeat elements are essential for maintaining 3D structure.
Liquid Biopsies: DNA Size Matters
Study finds circulating tumour DNA can be distinguished from healthy DNA through fragment size identification.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!