Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Technology May Enable Earlier Cancer Diagnosis

Published: Friday, December 21, 2012
Last Updated: Friday, December 21, 2012
Bookmark and Share
Nanoparticles amplify tumor signals, making them much easier to detect in the urine.

Finding ways to diagnose cancer earlier could greatly improve the chances of survival for many patients. One way to do this is to look for specific proteins secreted by cancer cells, which circulate in the bloodstream. However, the quantity of these biomarkers is so low that detecting them has proven difficult.

A new technology developed at MIT may help to make biomarker detection much easier. The researchers, led by Sangeeta Bhatia, have developed nanoparticles that can home to a tumor and interact with cancer proteins to produce thousands of biomarkers, which can then be easily detected in the patient’s urine.

This biomarker amplification system could also be used to monitor disease progression and track how tumors respond to treatment, says Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science at MIT.

“There’s a desperate search for biomarkers, for early detection or disease prognosis, or looking at how the body responds to therapy,” says Bhatia, who is also a member of MIT’s David H. Koch Institute for Integrative Cancer Research. She adds that the search has been complicated because genomic studies have revealed that many cancers, such as breast cancer, are actually groups of several diseases with different genetic signatures.

The MIT team, working with researchers from Beth Israel Deaconess Medical Center, described the new technology in a paper appearing in Nature Biotechnology on Dec. 16. Lead author of the paper is Gabriel Kwong, a postdoc in MIT’s Institute for Medical Engineering and Science and the Koch Institute.

Amplifying cancer signals

Cancer cells produce many proteins not found in healthy cells. However, these proteins are often so diluted in the bloodstream that they are nearly impossible to identify. A recent study from Stanford University researchers found that even using the best existing biomarkers for ovarian cancer, and the best technology to detect them, an ovarian tumor would not be found until eight to 10 years after it formed.

“The cell is making biomarkers, but it has limited production capacity,” Bhatia says. “That’s when we had this ‘aha’ moment: What if you could deliver something that could amplify that signal?”

Serendipitously, Bhatia’s lab was already working on nanoparticles that could be put to use detecting cancer biomarkers. Originally intended as imaging agents for tumors, the particles interact with enzymes known as proteases, which cleave proteins into smaller fragments.

Cancer cells often produce large quantities of proteases known as MMPs. These proteases help cancer cells escape their original locations and spread uncontrollably by cutting through proteins of the extracellular matrix, which normally holds cells in place.

The researchers coated their nanoparticles with peptides (short protein fragments) targeted by several of the MMP proteases. The treated nanoparticles accumulate at tumor sites, making their way through the leaky blood vessels that typically surround tumors. There, the proteases cleave hundreds of peptides from the nanoparticles, releasing them into the bloodstream.

The peptides rapidly accumulate in the kidneys and are excreted in the urine, where they can be detected using mass spectrometry.

This new system is an exciting approach to overcoming the problem of biomarker scarcity in the body, says Sanjiv Gambhir, chairman of the Department of Radiology at Stanford University School of Medicine. “Instead of being dependent on the body to naturally shed biomarkers, you’re sampling the site of interest and causing biomarkers that you engineered to be released,” says Gambhir, who was not part of the research team.

Distinctive signatures

To make the biomarker readings as precise as possible, the researchers designed their particles to express 10 different peptides, each of which is cleaved by a different one of the dozens of MMP proteases. Each of these peptides is a different size, making it possible to distinguish them with mass spectrometry. This should allow researchers to identify distinct signatures associated with different types of tumors.

In this study, the researchers tested their nanoparticles’ ability to detect the early stages of colorectal cancer in mice, and to monitor the progression of liver fibrosis.

Liver fibrosis is an accumulation of scarring in response to liver injury or chronic liver disease. Patients with this condition have to be regularly monitored by biopsy, which is expensive and invasive, to make sure they are getting the right treatment. In mice, the researchers found that the nanoparticles could offer much more rapid feedback than biopsies.

They also found that the nanoparticles could accurately reveal the early formation of colorectal tumors. In ongoing studies, the team is studying the particles’ ability to measure tumor response to chemotherapy and to detect metastasis.

The research was funded by the National Institutes of Health and the Kathy and Curt Marble Cancer Research Fund.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Linking RNA Structure and Function
Biologists have deciphered a lncRNA structure and used the information to investigate its cellular protein interactions.
Friday, September 09, 2016
Protecting Privacy in Genomic Databases
System helps ensure databases used in medical research will not leak patients’ personal information.
Wednesday, August 10, 2016
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Wednesday, July 27, 2016
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Friday, July 08, 2016
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Friday, May 27, 2016
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
Monday, April 04, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
A New Way to Discover DNA Modifications
Researchers systematically find molecules that help regulate and protect DNA.
Wednesday, March 02, 2016
Mapping Regulatory Elements
Systematically searching DNA for regulatory elements indicates limits of previous thinking
Wednesday, February 03, 2016
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
Wednesday, February 03, 2016
Supply Chain
Chemists discover how a single enzyme maintains a cell’s pool of DNA building blocks.
Wednesday, January 13, 2016
How Cancer Cells Spread
Study offers new targets for drugs that may prevent cancer from spreading.
Thursday, December 17, 2015
Scaling Up Synthetic-Biology Innovation
MIT professor’s startup makes synthesizing genes many times more cost effective.
Monday, December 14, 2015
Delivering microRNAs for Cancer Treatment
Scientists exploit gene therapy to shrink tumors in mice with an aggressive form of breast cancer.
Wednesday, December 09, 2015
Scientific News
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Regulatory RNA Essential to DNA Damage Response
Researchers discover a tumour suppressor is stabilized by an RNA molecule, which helps cells respond to DNA damage.
Death-or-Repair Switch Protein Identified
Researchers have identified a protein that plays a key role in the decision process of cell damage repair or cellular suicide.
Heart Arrhythmia Caused by Mosaic of Mutant Cells
Researchers have solved the genetic mystery of an infant suffering from heart arrhythmia.
Crispr Toolbox Expanded By Protein
Researchers have shown a newly discovered CRISPR protein has two distinct RNA cutting activities.
Genetic Impact of Endurance Training
Research has found that endurance training changes genetic activity in thousands of genes, giving rise to large number of altered RNA variants.
Wearable Microscope Can Measure Fluorescent Dyes Through Skin
UCLA research could make monitoring disease biomarkers easier and more cost-effective.
“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
A Diversity of Genomes
New DNA from understudied groups reveals modern genetic variation, ancient population shifts.
Gene Could Reduce Female Mosquitoes
Virginia Tech researchers have found a gene that can reduce female mosquitoes over many generations.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!