Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Serendipity Points to New Potential Target and Therapy for Melanoma

Published: Friday, December 21, 2012
Last Updated: Friday, December 21, 2012
Bookmark and Share
A University of Colorado Cancer Center describes a new target and potential treatment for melanoma, the most dangerous form of skin cancer.

MicroRNA can decide which genes in a cell’s DNA are expressed and which stay silent. Melanoma tends to lack microRNA-26a, which makes the gene SODD go silent.

“It’s a double negative,” says Yiqun Shellman, PhD, investigator at the CU Cancer Center, associate professor at the CU School of Medicine, and the study’s co-senior author. “miR-26a works to stop the growth of cancer. You turn off this thing that should stop growth, and you have growth.”

When Shellman, David Norris and colleagues reintroduced microRNA-26a to melanoma cell lines that lacked it, they saw a marked decrease in cancer cell survival. MicroRNA-26a killed melanoma cells while leaving healthy cells unharmed.

In fact, the discovery started back a couple steps. First the group compared microRNA expression in healthy cells to that of microRNA expression in melanoma cells. “We hoped the difference between microRNA expression in healthy and melanoma cells would show which ones were contributing to tumorgenesis,” Shellman says.

The microRNA most consistently different between healthy and cancerous cells was 26a. The discovery of how it works and what exactly it does was serendipitous. “We started by testing the effect of microRNA-26a on known gene targets to see if it was effecting the expression of logical, cancer-causing pathways, but none of them seemed affected in melanoma,” Shellman says. “We were working with the SODD gene in an unrelated project, and SODD has a putative but not high-scored binding site for miR-26a, and thought, why not test it? Sure enough, it turned out to be the target – microRNA-26a downregulates this gene.”

Shellman hopes this robust finding in cell cultures will help pave the way for future work with microRNA-26a as a therapeutic target in animal models and eventually a human trial.

“The first step is to further pinpoint the genetic signatures of the patients likely to benefit from microRNA-26a replacement therapy,” Shellman says, noting that only some and not all melanoma cells were killed by miRNA replacement. “Maybe it’s simply the downregulation of microRNA-26a itself, or maybe we can use SODD expression as the biomarker,” Shellman says.

Once Shellman and colleagues discover the characteristics of a melanoma susceptible to microRNA-26a treatment, they hope funding will allow the lab to follow the promising therapy up the evolution from cells to humans.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Next-Gen Melanoma Drug Excels in Lab Tests
Anti-cancer activity was reported in 10 out of 11 patient tumor samples grown in mice and treated with the experimental drug TAK-733.
Thursday, November 13, 2014
CU Study Suggests Link Between Tumor Suppressors and Starvation Survival
A particular tumor suppressor gene that fights cancer cells does more than clamp down on unabated cell division, it also can help make cells more fit by allowing them to fend off stress.
Tuesday, May 14, 2013
Scientific News
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!