Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Sanford-Burnham and Intrexon Establish Collaboration

Published: Friday, January 04, 2013
Last Updated: Friday, January 04, 2013
Bookmark and Share
Combines Sanford-Burnham Medical Research Institute's renowned scientific team and Intrexon's proprietary discovery platforms to accelerate human induced pluripotent stem cell research.

Sanford-Burnham Medical Research Institute and Intrexon Corporation have announced a new collaboration to accelerate stem cell research.

Under the agreement, Sanford-Burnham will gain access to sophisticated proprietary cellular selection and gene regulation technologies that are not currently on the market, including Intrexon's Laser-Enabled Analysis and Processing (LEAP™) instrument and RheoSwitch Therapeutic System® (RTS®).

As part of the agreement, Intrexon may obtain commercial and intellectual property rights resulting from technological advances made under the collaboration.

"I'm looking forward to merging and melding our expertise," said Evan Y. Snyder, M.D., Ph.D., professor and director of Sanford-Burnham's Stem Cell Research Center and Stem Cell and Regenerative Biology Program.

Snyder continued, "We'll bring our iPSC and gene therapy expertise to the table. Likewise, our colleagues at Intrexon will share their knowledge of how best to use the technologies. We envision we'll be meeting with them frequently and sharing insights to further advance the platforms for stem cell applications."

Sanford-Burnham is currently building the world's largest collection of human iPSCs generated from individual patients and healthy volunteers.

The Stem Cell Research Center's expertise and resources are available to all Sanford-Burnham scientists, as well as other researchers at nonprofit and for-profit research organizations around the world.

LEAP™ for induced pluripotent stem cells

The LEAP™ instrument is an automated system that provides high-throughput cell imaging coupled with versatile laser-based cell processing. The instrument's applications include rapid and accurate in situ purification of adherent cells and cell colonies, features that are particularly useful when working with complex human iPSC cultures.

The LEAP™ instrument enables scientists in Sanford-Burnham's Stem Cell Research Center to improve and accelerate their methods for generating human iPSCs and their differentiated progeny, which are used in the study of a variety of diseases. iPSCs are stem cells derived from adult cells-a research advance that garnered the 2012 Nobel Prize in Physiology or Medicine.

"Intrexon's LEAP™ instrument will allow us to isolate high-quality human iPSCs while eliminating non- or partially-reprogrammed cells or other undesirable cell types in the culture-a laborious process that previously took a trained technician a lot of time," explained Yang Liu, Ph.D., manager of Sanford-Burnham's Stem Cell Research Center. "Together with other automated equipment available in our facility, the new capabilities will free up valuable resources, allowing us to provide an even greater level of service to our internal and external users."

"We are big believers in iPSCs and their potential for use in new therapeutic modalities," said Fred Koller, Ph.D., vice president and executive director of the Intrexon Institute for Biomolecular Research. "It's exciting for us to use our technology collaboratively with Sanford-Burnham's team of premier scientists. We look forward to applying LEAP™, RTS® and other Intrexon tools in this stem cell research, and are proud to assist in the diverse medical advancements enabled by this collaborative effort with Sanford-Burnham."

Controlling gene expression with RTS®

RTS® technology, a proprietary biological "switch" that enables inducible controlled gene expression by administering an activator ligand, will give Sanford-Burnham scientists a new method to regulate when certain genes are turned on or off in cells. The system also provides more accurate delivery of new therapeutic candidates to specific tissues in animal models.

"We're interested in the RTS® technology because it will help us to turn genes on or off in stem cells that have been transplanted. For example, it can be used for therapeutic protein expression in stem cells that home to and help eradicate brain tumors," said Snyder.

"New cell-based therapies may someday result from our LEAP™ and RTS® technologies," Koller said. "Working with leaders in the field of academic stem cell research will leverage both parties' technologies to get there faster."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genetic Mutation Increases Risk of Parkinson’s Disease from Pesticides
A team of researchers has brought new clarity to the picture of how gene-environmental interactions can kill nerve cells that make dopamine.
Thursday, December 05, 2013
Scientific News
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Fatty Liver Disease and Scarring Have Strong Genetic Component
Researchers say that hepatic fibrosis, which involves scarring of the liver that can result in dysfunction and, in severe cases, cirrhosis and cancer, may be as much a consequence of genetics as environmental factors.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos