Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genetic Mystery of Behcet's Disease Unfolds Along the Ancient Silk Road

Published: Monday, January 07, 2013
Last Updated: Monday, January 07, 2013
Bookmark and Share
NIH researchers identify new gene variants associated with risk for complex inflammatory syndrome.

Researchers have identified four new regions on the human genome associated with Behcet's disease, a painful and potentially dangerous condition found predominantly in people with ancestors along the Silk Road. For nearly 2,000 years, traders used this 4,000-mile network linking the Far East with Europe to exchange goods, culture and, in the case of the Silk Road disease, genes. National Institutes of Health researchers and their Turkish and Japanese collaborators published their findings in the Jan. 6, 2013, advance online issue of Nature Genetics.

Named for the Turkish physician who described it in 1937, Behcet’s (pronounced BET’-chets) disease is triggered by complex genetic and environmental factors, and causes inflammation of blood vessels in various parts of the body. Common symptoms include painful mouth and genital sores, and eye inflammation that can lead to blindness. In some cases, it can be life-threatening, affecting blood vessels in the brain, lungs, and other vital organs. About 1 in 250 people in Turkey have Behcet's disease; others with the disease are found largely in regions along the Silk Road.

Genetic factors are thought to play a role in susceptibility to Behcet's disease, with the human leukocyte antigen (HLA) B-51 gene region of the genome, accounting for about 20 percent of genetic risk for the disease. Researchers have been aware of the HLA B-51 association for about 40 years. Two years ago, the research team identified gene associations at two other specific chromosome locations, or loci.

"The current study represents an important advance because it dramatically broadens the spectrum of genetic loci associated with Behcet's disease," said Dan Kastner, M.D., Ph.D., scientific director of the Intramural Research Program at the National Human Genome Research Institute and senior author of the study. "These newly discovered genetic associations provide a link between Behcet’s disease and other more common illnesses, and thereby suggest new therapies for Behcet’s disease. In addition, two of the newly discovered genes provide an intriguing link between genes and the microbes in our environment."

Researchers conducted a genome-wide association study (GWAS) that enrolled 1,209 Turkish people affected by Behcet's disease and 1,278 unaffected Turkish people — all residents of the country. They looked at many points on the human genome called single-nucleotide polymorphisms (SNPs), with each SNP representing a difference in a single DNA building block, called a nucleotide. Researchers then compared SNP differences between people with and without disease.

From nearly 800,000 SNPs, researchers detected and mapped a small number that are found in those who have Behcet’s disease at a significantly higher rate than in those without the disease, suggesting that the variant or another one nearby contributes to the disease.

"Each of the genetic factors may contribute a little to the overall risk of disease," said Elaine F. Remmers, Ph.D., staff scientist in NHGRI’s Inflammatory Disease Section and study co-author. "We are also identifying them in pathways that are important in inflammatory disease development."

She noted that not all of the 800,000 gene variants analyzed were directly genotyped. Genotyping involves examining a person's DNA at a site where a variation is commonly known to occur. Instead, the team used the strategy of imputing, or surmising, that there were genotypes worth investigating near known variants.

"That worked very well for us," Dr. Remmers said. "We found that our predicted genotypes were pretty good and that the associations we found were quite similar in both the predicted and the experimentally confirmed genotypes."

Each of the four newly identified gene regions is already known to play a role in immune regulation. The genetic associations have helped classify Behcet’s disease with more common inflammatory conditions such as psoriasis, inflammatory bowel disease and a form of spinal arthritis called ankylosing spondylitis.

Among the newly identified regions, researchers found:

•    An important association between Behcet’s disease and a gene called ERAP1. ERAP1 codes for a molecule that processes microbial proteins in white blood cells. Variants of this protein can lead to more or less efficient processing of microbial proteins before they are loaded onto HLA molecules for presentation to the immune system. The variants of ERAP1 identified in this study increase the risk of Behcet's disease, but only in those individuals with one specific HLA type, HLA-B51, which has previously been associated with Behcet’s disease. Dr. Kastner speculates that the ERAP1 variant associated with Behcet’s disease processes microbial proteins in such a way that they can be loaded onto the HLA-B51 molecule to trigger an abnormal immune response. The very same variant of ERAP1 that is associated with Behcet's disease is protective for ankylosing spondylitis and psoriasis, but only in people with the HLA types associated with those diseases.
•    A significant association of Behcet's disease with variants near the CCR1 gene. Proteins coded by this gene help infection-fighting blood cells migrate to sites of invading microorganisms. When this function is defective, the microorganisms can trigger a persistent inflammatory response.
•    An association of the disease with variants in the KLRC4 gene. The function of the receptor protein coded by this gene is not well understood, but the researchers suggest that it may be important to investigate further because it is located within the genomic region with the strongest evidence for linkage to a disease gene in a study of Turkish family health histories in which members sometimes have a rare familial form of Behcet’s disease.
•    An association with the STAT4 gene, in which different variants in the same vicinity of the genome increase risk for autoimmune diseases, including rheumatoid arthritis and lupus.

"We are incredibly excited about these latest findings," Dr. Kastner said. "Combined with our studies two years ago, the current genetic data make a strong case for a causal connection between Behcet’s disease and disorders such as ankylosing spondylitis, psoriasis, and inflammatory bowel disease. This raises real hope that some of the treatments that have been found effective in these other illnesses will have some utility in Behcet’s disease, thereby helping to alleviate suffering and prevent mortality."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
NIH Study Identifies Gene Variant Linked to Compulsive Drinking
Mice carrying the Met68BDNF gene variant would consume excessive amounts of alcohol.
Tuesday, July 21, 2015
In Blinding Eye Disease, Trash-Collecting Cells Go Awry, Accelerate Damage
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Friday, July 03, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
NCI-MATCH Trial will Link Targeted Cancer Drugs to Gene Abnormalities
Precision medicine trial will open to patient enrollment in July.
Tuesday, June 09, 2015
A New Role for Zebrafish: Larger Scale Gene Function Studies
A relatively new method of targeting specific DNA sequences in zebrafish could dramatically accelerate the discovery of gene function and the identification of disease genes in humans.
Monday, June 08, 2015
NIH Researchers Pilot Predictive Medicine by Studying Healthy People’s DNA
New study sequence the genomes of healthy participants to find “putative,” or presumed, mutations.
Friday, June 05, 2015
Linking Targeted Cancer Drugs to Gene Abnormalities
Investigators at the NIH have announced a series of clinical trials that will study drugs or drug combinations that target specific genetic mutations.
Wednesday, June 03, 2015
Scientists Create Mice with a Major Genetic Cause of ALS and FTD
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Friday, May 22, 2015
Mice With a Major Genetic Cause of ALS and FTD Created
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Thursday, May 21, 2015
New Insights into How DNA Differences Influence Gene Activity, Disease Susceptibility
NIH-funded pilot study provides a new resource about variants across the human genome.
Friday, May 08, 2015
Souped-up Remote Control Switches Behaviors On-and-Off in Mice
BRAIN Initiative yields chemical-genetic tool with push-pull capabilities.
Thursday, May 07, 2015
NIH-funded Study Points Way Forward for Retinal Disease Gene Therapy
Benefits for Leber congenital amaurosis peak after one to three years, then diminish.
Tuesday, May 05, 2015
Possible Treatment for Lethal Pediatric Brain Cancer
NIH-funded preclinical study suggests epigenetic drugs may be used to treat leading cause of pediatric brain cancer death.
Tuesday, May 05, 2015
Statement on NIH Funding of Research Using Gene-Editing Technologies in Human Embryos
Researchers modify the gene responsible for a potentially fatal blood disorder using CRISPR/Cas9 technology.
Saturday, May 02, 2015
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
Web App Helps Researchers Explore Cancer Genetics
Brown University computer scientists have developed a new interactive tool to help researchers and clinicians explore the genetic underpinnings of cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!