Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

High-Throughput Sequencing Shows Potentially Hundreds of Gene Mutations Related To Autism

Published: Wednesday, January 09, 2013
Last Updated: Wednesday, January 09, 2013
Bookmark and Share
Autism Sequencing Consortium discovers six new drug targets through large-scale studies.

Genomic technology has revolutionized gene discovery and disease understanding in autism, according to an article published in the journal Neuron.

The paper highlights the impact of a genomic technology called high-throughput sequencing (HTS) in discovering numerous new genes that are associated with autism spectrum disorder (ASD).

"These new discoveries using HTS confirm that the genetic origins of autism are far more complex than previously believed," said Joseph D. Buxbaum, PhD, Director of the Seaver Autism Center at the Icahn School of Medicine at Mount Sinai, and lead author of the article in Neuron.

Dr. Buxbaum is co-founder and co-director of the Autism Sequencing Consortium (ASC), a large multisite collaboration which is a model for future research. The co-authors of the article are Mark J. Daly, Broad Institute and Harvard Medical School; Bernie Devlin, University of Pittsburgh; Thomas Lehner, National Institute of Mental Health; Kathryn Roeder, Carnegie-Mellon University; Matthew W. State (co-director), Yale University, and the ASC.

HTS is a revolutionary new technology that allows scientists to obtain the sequence of all 22,000 human genes and the entire human genome in one experiment. This provides an unparalleled look at an individual’s genetic makeup and allows for gene discovery and for genetic testing.

"HTS shows us that there are not just a few mutations, but potentially hundreds of mutations that are linked to autism," said Dr. Buxbaum."By identifying the many genetic roots of this disorder, we can better understand its biology, which in turn will allow us to develop more tailored treatments for individuals.It is a transformative time for genetic research in autism."

Ground-breaking, highly reproducible discoveries identified through HTS described in the article include:
•    the "staggering degree" of genetic heterogeneity in autism, which means that many individuals with autism do not share similar gene mutations;
•    the identification of an increasing number of specific genes and chromosomal intervals conferring risk;
•    the important emerging role in autism of both rare and "de novo germline mutations," or mutations developed in the sperm or ovaries of parents and passed on to children; and
•    gene loci associated with autism that overlap with gene loci associated with other illnesses, such as intellectual disability and epilepsy.

Dr. Buxbaum estimates that researchers have already identified 50–100 specific genes and 20-40 chromosomal loci conferring risk. The researchers predict, based on the first studies in 1,000 families, that there are many hundreds of undiscovered ASD associated genes. This surge in the number of genes related to autism revealed by HTS marks a coming of age for high-throughput sequencing, the authors believe. The path forward for new discoveries, they write, is via one of two HTS processes: whole exome sequencing (WES) or whole genome sequencing (WGS) in large cohorts. The exome is the small fraction of the genome that codes for proteins.

The article spotlights the successful work of the ASC, founded in 2010, as a model to bring to fruition an explosive gene discovery process.The ASC member sites, using WES technology also available at Mount Sinai, recently discovered six de novo mutations in autism patients: CHD8, DYRK1A, GRIN2B, KATNAL2, POGZ and SCN2A.These six genes may be targets for future treatments. Some of these discoveries were accomplished rapidly because the Consortium’s 25 research groups, located around the world, combined their data and shared it before publication. As a result, they conducted four large studies using 1,000 families.

There are approximately 8,000 to 10,000 families currently available to the Consortium to study autism, but the article suggests many more are needed to speed up gene discoveries. Also needed for the future is increased collaboration among research teams and the integration of autism studies with studies of other psychiatric disorders. In addition, high-capacity supercomputers are needed to analyze the data. The ASC was designed to address these issues, and Mount Sinai has created Minerva, one of the largest academic supercomputers in the world, to help with these goals.

The research conducted at Mount Sinai was supported by grants from the National Institutes of Health and the Seaver Foundation.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

More Accurate and Comprehensive Whole Genome Assembly
Scientists from the Icahn School of Medicine at Mount Sinai have developed a new approach to build nearly complete genomes by combining high-throughput DNA sequencing with genome mapping.
Tuesday, June 30, 2015
Cell Powerhouse Sequencing Technology Provides Deeper Look at Inherited Disease Risk
A new sequencing technique may provide a clearer picture of how genes in mitochondria, the “powerhouses” that turn sugar into energy in human cells, shape each person’s inherited risk for diabetes, heart disease and cancer.
Friday, April 03, 2015
Master Switch Found to Stop Tumor Cell Growth by Inducing Dormancy
Commonly used anticancer drugs may help to make tumor cells dormant.
Tuesday, February 03, 2015
Mount Sinai Scientists and International Team Shed New Light on Schizophrenia
Genes and pathways identified could inform new approaches to treatment and address acute need for drug development for this disorder.
Saturday, July 26, 2014
Researchers Identify Protein That Keeps Blood Stem Cells Healthy as They Age
Early findings may help to reduce risk of age-related blood cancers.
Thursday, June 12, 2014
Scientific News
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos