Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Epigenomic Abnormalities Predict Patient Survival in Non-Hodgkins Lymphoma

Published: Wednesday, January 16, 2013
Last Updated: Wednesday, January 16, 2013
Bookmark and Share
University of Colorado Cancer Center looks into how epigenetics could be used to control cancer.

A University of Colorado Cancer Center study published today in the journal PLOS GENETICS shows that in cancer, not only can genes themselves go bad, but abnormal changes in the epigenetic mixing board can unfortunately change the expression of these genes. Researchers hope to play the role of sound engineers, controlling these harmful epigenomic changes to turn down cancer itself or perhaps sensitize cancers to existing drugs.

The epigenome’s primary tool – and by far the easiest to study – is methylation: it attaches little methyl groups to DNA sequences near the genes to silence or promote their expression.

“Not only do we see more abnormal methylation in non-Hodgkin lymphoma patients than in healthy B-cell populations, but there are three distinct subtypes of the disease in the clinic, each more aggressive than the next. These three clinical trajectories of non-Hodgkins lymphoma were distinctly marked by their levels of abnormal methylation,” says Subhajyoti De, PhD, CU Cancer Center investigator and assistant professor at the CU School of Medicine.

In other words, methylation patterns predict patient survival. Here’s how it works:

DNA should be methylated in a consistent way – you get a certain, standardized amount of methyl “residue” attached to your genes. Sure enough, that’s the case in healthy B-cells. Subhajyoti and colleagues show that in cancerous B-cells, the level of DNA methylation from cell to cell varies wildly. And the more wildly the level of DNA methylation varies, the more aggressive is the cancer. It’s as if, in the body, you want a consistent epigenome that maintains the methylation of the healthy status quo –when a willy-nilly epigenome drops methylation randomly here and there, it promotes non-normal cells, like cancer.

So abnormal methylation is certainly correlated with not only cancer, but with the aggressive behaviors of cancer subtypes. But what exactly is the functional role of this methylation?

“We think that in addition to genetic mutations that cause cancer, epigenetic changes probably play a subtle role that allows the cancer to thrive within our body,” Subhajyoti says.

There are drugs that affect the epigenome’s ability to methylate and so control genes – some of which crescendo or decrescendo the amount of methylation across the board, and some of which affect the amount of methylation on certain genetic products. Does one of these drugs hold the key to muting cancer?

Subhajyoti hopes to find out.

“For the last 50 years, the scientific community pushed to identify the genetic drivers of cancer, but now in the past five or six years we’ve expanded the search into the epigenome as well,” Subhajyoti says. “We now expect to find that both genetic and epigenetic abnormalities are important for initiation and maintenance of cancer.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

microRNA Cooperation Mutes Breast Cancer Oncogenes
Turning up a few microRNAs a little may offer as much anti-breast-cancer activity as turning up one microRNA a lot – and without the unwanted side effects.
Friday, May 10, 2013
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!