Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Find Gene that Causes Drug Resistance in Cancer

Published: Wednesday, January 16, 2013
Last Updated: Wednesday, January 16, 2013
Bookmark and Share
The discovery is a first step in creating new, effective therapeutic treatments for sufferers of aggressive cancers.

“There are not a lot of options for cancer patients with diseases such as myeloma,” said BYU biology professor David Bearss, a coauthor on the study published Jan. 14 in the journal Cancer Cell. “Myeloma is not only an extremely painful cancer, but it is also a disease that is resistant to treatment.”

Multiple myeloma is a cancer of plasma cells that exists exclusively in the bone. Over time the cancer cells take over bone marrow and destroy its function. This results in major health problems, including failure of the immune system, loss of kidney function, a drop in red blood cell count and large soft spots or holes that form in bones. These holes lead to painful fractures throughout the body, from the skull to hips to the spine.

Compounding that pain for patients is that myeloma cells quickly become resistant to chemotherapy and other drugs, resulting in a short life expectancy for those diagnosed. Over the last few years lead researchers Fenghuang (Frank) Zhan and Guido Tricot, along with Bearss, have been trying to figure out how the disease develops drug resistance.

For the Cancer Cell study, the team carried out a genomic analysis of the biopsied cells of 19 myeloma patients, taken from different stages of their cancer development. They wanted to see what was happening on the genetic level as the disease progressed.

They found that patients with the most aggressive forms of myeloma, and the patients with the poorest drug response, were those who had a high expression of the gene NEK2. That finding led the team to start going after the gene in the lab to see what would happen.

“Silencing NEK2 in cancer cells potently decreased drug resistance, induced cell-cycle arrest, cell death, and inhibition of cancer cell growth in vitro and in vivo," said Zhan, professor of internal medicine at University of Iowa’s Carver College of Medicine.

Added Bearss: “We were able to show that if we inhibit NEK2, then we can actually restore sensitivity to drugs that we use right now.”

The research results also indicate that NEK2 can be used in diagnostic testing.

“We’ve found that this gene is not just a predictor of poor therapy response in myeloma, but is a predictor to poor response in other cancers, such as breast cancer, lung cancer and other major tumor types,” Bearss said. “A big take home from this study is that we could potentially use NEK2 for early screening of patients so we could treat patients with higher levels more aggressively.”

Bearss and his BYU undergraduate student team are now working toward the development of drugs that specifically target NEK2. Their hope is to develop a compound that is minimally toxic to normal cells while having a high selectivity to cancer cells.

The Iowa-BYU research team is currently in the third year of a five-year National Institute of Health grant. The goal is to be ready to take newly formed compounds into human studies by the end of the grant period.

"This study shows convincingly that genomic changes over time are culprit in more aggressive cancer behavior,” said Dr. Rafael Fonseca, Chair of the Department of Medicine at Mayo Clinic in Arizona, who was not involved in the study. “It is likely that for cancers the major risk factors for poor prognosis are not the specific cancer genetic changes, but rather the ability of any given cancer to change, mutate and evolve."

A good portion of Professor Bearss’ contribution to this research study occurred while he was Co-Director of the Center for Investigational Therapeutics and an associate professor of oncology at the University of Utah’s Huntsman Institute of Cancer. Collaborators Zhan and Tricot were also both formerly at the Huntsman Cancer Institute.

Dr. Tricot currently serves as the director of Holden Comprehensive Cancer Center’s Bone Marrow Transplant and Myeloma Program at University of Iowa Hospitals and Clinics.

Bearss joined BYU’s Department of Physiology and Developmental Biology in the fall of 2012, after three years as a professor at the Huntsman Cancer Institute.

Dr. Bearss also served on the faculty of the University of Arizona and has founded and led numerous pharmaceutical startup companies during his career.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!