Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Salk Institute Awarded Historic $42 Million Grant to Establish Center for Genomic Medicine

Published: Thursday, January 24, 2013
Last Updated: Thursday, January 24, 2013
Bookmark and Share
World-renowned research facility receives largest single donation in its 53-year history.

The Salk Institute for Biological Studies has received a $42 million gift-the largest in the Institute's history-to establish the Helmsley Center for Genomic Medicine (HCGM), a research center dedicated to decoding the common genetic factors underlying many complex chronic human diseases.

The award, from the Leona M. and Harry B. Helmsley Charitable Trust, will support interdisciplinary research that paves the way to new therapies for chronic illnesses such as cancer, diabetes and Alzheimer's disease.

"This remarkable gift reflects the strong partnership between Salk and the Helmsley Charitable Trust and their commitment that the Institute stay at the forefront of biomedical research," said William R. Brody, Salk president. "By working together, Salk and the Trust have successfully sculpted this unprecedented grant. It will provide vital funding to enable our scientists to pursue the kinds of transformative scientific discoveries and advancements that will have worldwide impact on people's health for generations to come. With its scale and unique focus on supporting vitally important basic scientific research, the Helmsley Charitable Trust stands among philanthropy's vanguard in promoting innovative cross-disciplinary initiatives such as this one."

John Codey, a trustee for the Helmsley Charitable Trust, said that the Trust decided to establish the center at Salk because of the Institute's long track record of ground-breaking discoveries and the growing need to address chronic diseases.

"Millions of people suffer from chronic illnesses, and these diseases are placing an unsustainable burden on our healthcare system," Codey says. "The Helmsley Center for Genomic Medicine will help to address this by serving as an incubator for tomorrow's clinical treatments and cures."

Broadly defined, genomic medicine is the science of using maps of human DNA-the genome-to understand how cells operate and generate new therapies for human disease. The Helmsley Center for Genomic Medicine (HCGM)will allow Salk researchers to use genomic data and powerful new technologies to decipher the molecular and genetic mechanisms that go awry in chronic disease.

The center will include scientists who are leaders in a range of biomedical research fields, including stem cell biology, endocrinology, cancer biology, metabolism,neurobiology, developmental biology, inflammation, and gene therapy. They will combine their efforts to understand how certain cellular pathways serve as lynchpins for chronic diseases, such as cancer,diabetes and neurodegenerative disorders. For instance, Salk researchers are finding that the cellular pathways involved in inflammation play a role in a range of diseases, including diabetes, heart disease and cancer. This suggests that developing therapies that address inflammation could help prevent and treat a broad range of disorders.

The all-star team of Salk scientists includes Inder Verma, Fred H. Gage, Ronald Evans, Juan Carlos Izpisua Belmonte, Reuben Shaw and Marc Montminy.

"The scientific collaborations fostered by HCGM will far exceed the efforts of any individual participating laboratory," says Salk scientist Inder Verma, project leader of the new partnership between Salk and the Helmsley Charitable Trust. "The state-of-the-art core facilities made possible by this grant will offer access to technology and support that no researcher could get on their own."

In addition to charting the common genomic basis for chronic conditions and uncovering new potential targets for therapies, the center's researchers will explore how genomic networks control stem cell development. This will allow researchers to manipulate genes to make stem cells useful for studying disease and regenerative medicine. The center will also explore how disease alters the epigenome, chemical switches on the DNA molecule which influences genetic activity, which may explain why patients with similar genetic profiles respond differently to treatment.

"Chronic illness leads to distinctive changes at the genetic level and this gives us a new way to approach diagnosis and treatment," says Ronald M. Evans, professor in Salk's Gene Expression Laboratory. "HCGM will allow experts in cellular genetics and genomics to team up and seek out common molecular signatures of disease. Chronic diseases are complex, and to understand them you need to blend science, medicine and new advances in drug discovery by approaching them from different angles."

The Helmsley Charitable Trust's important gift is one of several major contributions made to Salk by the Trust. In 2009, the Trust issued a $5.5 million grant to found the Salk Center for Nutritional Genomics to study nutrition at the molecular level and its impact on the role of metabolism in diabetes, obesity, cancer, exercise physiology and lifespan. The Trust awarded an additional $15 million in 2010 to create a collaborative stem cell project involving Salk and Columbia University to fast-track the use of induced pluripotent stem cells to gain new insight into disease mechanisms and screen for novel therapeutic drugs.

"Our philanthropic investment in Salk has produced tangible and impactful results, upon which this latest grant will build significantly," says Codey. "With the Helmsley Center for Genomic Medicine we are partnering with Salk to tackle some of the most devastating diseases facing humankind."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Epigenetic Variations Between Tissues
A Salk Institute-led team has generated a map of the human methylome, gaining insight into patterns of DNA methylation of various tissues.
Wednesday, June 03, 2015
Vital Step in Stem Cell Growth Revealed
Salk scientists' finding could aid regenerative and cancer therapies.
Thursday, May 07, 2015
Gene-Editing Technique Offers Hope For Hereditary Diseases
Salk scientists use molecular "scissors" to eliminate mitochondrial mutations in eggs and embryos.
Monday, April 27, 2015
Cellular Scissors Chop up HIV Virus
Salk scientists re-engineered the bacterial defense system CRISPR to recognize HIV inside human cells and destroy the virus, offering a potential new therapy.
Thursday, March 12, 2015
No Extra Mutations in Modified Stem Cells, Study Finds
New results ease previous concerns that gene-editing techniques-used to develop therapies for genetic diseases-could add unwanted mutations to stem cells.
Saturday, July 12, 2014
Salk Institute Receives $3M Gift for Ageing Research
The gift from the Glenn Foundation for Medical Research will allow the Institute to continue conducting research to understand the biology of normal human aging and age-related diseases.
Friday, May 23, 2014
Circadian Clock Gene Linked to Eating Schedule
Research from the Salk Institute has shown that mutations in the circadian genes could drive night eating syndrome.
Friday, May 23, 2014
Salk Institute and Stanford Lead New $40M Stem Cell Genomics Center
Collaborative research center will bridge genomics and stem cell projects to find new therapies.
Sunday, February 02, 2014
Researchers Chart Epigenomics of Stem Cells That Mimic Early Human Development
Collaborative study will help overcome hurdles to using stem cells to treat diseases and injuries.
Friday, May 10, 2013
Chromosome "Anchors" Organize DNA during Cell Division
Salk discovery of new role for telomeres in cellular growth may shed light on aging and age-related diseases.
Wednesday, January 09, 2013
Salk Scientists Pinpoint Key Player in Parkinson's Disease Neuron Loss
Stem cell study may help to unravel how a genetic mutation leads to Parkinson's symptoms.
Tuesday, October 23, 2012
Cold Viruses Point the way to New Cancer Therapies
Cold viruses generally get a bad rap, but new findings by a team of scientists at the Salk Institute for Biological Studies suggest that these viruses might also be a valuable ally in the fight against cancer.
Thursday, October 18, 2012
Reprogramming Signature may help Overcome Barriers to Regenerative Medicine
Salk scientists show nine genes at heart of epigenetic changes in induced pluripotent stem cells.
Friday, September 21, 2012
Salk Stem-Cell Research Shows Promise in Sickle-Cell Disease
Salk Stem-Cell Research Shows Promise in Sickle-Cell Disease Researchers are using cells from sickle-cell patients to potentially cure the anemia-inducing condition that affects one in every 12 black Americans. The method developed by Salk researchers also may be used to reverse other disorders linked to the same gene mutation implicated in sickle-cell disease.
Friday, December 09, 2011
Editing Scrambled Genes in Human Stem Cells may Help Realize the Promise of Combined Stem Cell-gene Therapy
Researchers at the Salk Institute successfully edited a diseased gene in patient-specific induced pluripotent stem cells as well as adult stem cells.
Tuesday, May 24, 2011
Scientific News
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
UC San Diego Team Up with Illumina to Speed-Read Your Microbiome
Data analysis app accelerates studies aimed at using microbes to predict, diagnose and treat human diseases.
Paving the Way for Diamonds to Trace Early Cancers
Researchers from the University of Sydney reveal how nanoscale 'diamonds' can light up early-stage cancers in MRI scans.
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos