Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Uncover Gene’s Role in Rheumatoid Arthritis

Published: Wednesday, January 30, 2013
Last Updated: Wednesday, January 30, 2013
Bookmark and Share
Discovery may extend to other autoimmune diseases.

University of Michigan research sheds new light on why certain people are more likely to suffer from rheumatoid arthritis – paving the way to explore new treatments for both arthritis and other autoimmune diseases.

The new UMHS research in mice identifies how a specific group of genes works behind the scenes to activate the bone-destroying cells that cause severe rheumatoid arthritis, a debilitating health issue for millions of Americans.

“We believe this could be a significant breakthrough in our understanding of why certain genes are associated with higher risk of rheumatoid arthritis and other autoimmune diseases – a link that has been a mystery in the field for decades,” says lead author Joseph Holoshitz, M.D., professor of internal medicine and associate chief of research in the division of rheumatology at the U-M School of Medicine.

“We hope that this improved understanding will open the door to future design of drugs to treat this crippling disease and autoimmune disease in general.”

The research appeared in The Journal of Immunology and was highlighted by Nature Reviews Rheumatology.

Rheumatoid arthritis is a chronic inflammatory disorder that damages the lining of joints and causes bone erosion, joint deformity and disability. The disease is an autoimmune disorder, characterized by the body’s immune system mistakenly attacking the body's tissues.

Researchers have long studied the phenomenon of why certain versions of an inherited group of genes known as “human leukocyte antigen” (HLA) are associated with autoimmune disorders. One subset of these HLA genes that codes a protein sequence called “shared epitope” represents the most significant genetic risk factor for rheumatoid arthritis, affecting disease susceptibility and severity. However, until now, the reason for this strong link has been unclear.

A common theory in the field has been that the association between particular HLA genes and autoimmune diseases is a result of mistakenly identifying body tissues as foreign – making the body the target of the immune system and setting off an attack on self-tissues, which results in disease.

The UMHS research challenges this long-held theory. The study shows, for the first time, how this subset of HLA genes causes arthritis – by activating inflammation-causing cells, as well as bone-destroying cells (known as osteoclasts). This leads to severe arthritis and bone erosion.
 
“We showed how the shared epitope is directly triggering osteoclasts, the very cells that are responsible for joint destruction in people with the disease,” says Holoshitz.

“Understanding these mechanisms at play could be a significant piece of future drug development. Because we now know the molecular mechanism that activates arthritis-causing cells, we have the potential to block that pathway with simple chemical compounds that could be used to treat rheumatoid arthritis and other diseases.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

What Drives Advanced Prostate Cancer?
Large international study finds 90% have anomaly that could influence treatment.
Tuesday, May 26, 2015
New Device May Shed Light on Why Cancer Cells Metastasize
Scientists from the University of Michigan think they are now a step closer to understanding why some cancer cells metastasize.
Thursday, May 21, 2015
Thyroid Cancer Genome Analysis Finds Markers Of Aggressive Tumors
TCGA study reveals molecular underpinnings; could lead to more precisely targeted treatment recommendations.
Monday, October 27, 2014
Genetic Pathway for Chronic Kidney Disease Revealed
Findings from the study open the door to early treatment for millions at risk for CKD.
Monday, June 23, 2014
Study Finds Potential to Match Tumors with Known Cancer Drugs
Mapping the landscape of kinases could aid in new world of personalized cancer treatment.
Friday, February 08, 2013
Researchers Identify Genetic Mutation for Rare Cancer
Gene sequencing program gives researchers new leads to improve cancer treatment.
Thursday, January 17, 2013
Researchers Find Driver of Breast Cancer Stem Cell Metastasis
Researchers at the University of Michigan Comprehensive Cancer Center have found that a cancer gene linked to aggressive spread of the disease promotes breast cancer stem cells.
Tuesday, July 31, 2012
U-M Researchers Create Reprogrammed Stem Cells for Disease Studies
Researchers to study the origin and progression of various diseases and to search for new treatments by using iPS cells with human embryonic stem cells.
Wednesday, July 27, 2011
University of Michigan Study Shows SEQUENOM's MassARRAY Technology Identifies HPV Infections
New study uncovers significant proportion of potential false negatives in widely used HPV DNA test which could lead to cervical cancer.
Tuesday, July 21, 2009
Gene Therapy Appears Safe to Regenerate Gum Tissue
University of Michigan researchers have developed a method of gene delivery that appears safe for regenerating tooth-supporting gum tissue.
Friday, April 17, 2009
New Genes Present Drug Targets for Managing Cholesterol and Glucose Levels
According to University of Michigan researcher, all the genes are potential new drug targets and some of them could help explain conditions that have been a mystery.
Tuesday, December 09, 2008
U-M Researchers Analyze 678 Genetic Markers in 29 Native Populations of Americas
Gene study adds weight to theory that native people of the Americas arrived in a single main migration across the Bering Strait.
Thursday, November 29, 2007
Cancer Drug Works by Overactivating Cancer Gene
Michigan researchers have discovered that a promising cancer drug is able to strike a blow against melanoma tumor cells by revving up the action of a cancer-promoting gene.
Friday, November 23, 2007
Well-known Scribe of Gene Instructions is also Key Player in Cell’s Ability to Detect and Repair DNA Damage
Enzyme’s important daily function has implications for understanding cancer and neurological diseases, say U-M researchers.
Friday, September 07, 2007
Little-Known Bits of RNA Help Master Tumor-Suppressor Gene do its Job, U-M Cancer Researchers Find
Three micro RNA genes appear to be key partners of protective gene p53; their loss is linked to common type of lung cancer.
Tuesday, August 28, 2007
Scientific News
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!