Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Find Way to Knockup Genes

Published: Thursday, February 07, 2013
Last Updated: Thursday, February 07, 2013
Bookmark and Share
Italian scientists use molecular RNA Chaperones to increase protein production from individual genes.

The technique is being hailed as a breakthrough in biotechnology that will transform cell science, accelerating the development of new medicines.

One of the most innovative biotechnologies of the last decade has recently been developed. SINEUP allows scientists, for the first time, to target individual genes in cells to knockup, or increase, the amount of protein they make. The technique will improve Protein manufacture, analyse the function of genes and engineer improved cell function.

This novel technology is based on pioneering research in the lab of Dr Stefano Gustincich at SISSA in Trieste. The mechanism relies on the discovery of an entirely new function for RNA. Although most well known as a messenger RNA molecule made by genes for protein synthesis, most RNA is not actually made by genes. Once thought to be junk, important functions for non-coding RNA are increasingly being found.

Working with collaborators from RIKEN in Yokohama, Dr Gustincich's lab identified a non-coding RNA which specifically binds to messenger RNA (mRNA) from the target gene. It then acts as a chaperone, efficiently escorting the target mRNA to ribosomes, where proteins are made. The new technology has now been tested on a variety of different cells and across a range of genes. Large increases in protein levels, up to 10-fold, have been seen.

The technology is being marketed by TransSINE Technologies and Cell Guidance Systems. Piero Carninci, CEO of TransSINE Technologies commented, "In many ways, the technique is the opposite of RNAi, a widely used technique that knocks down genes by targeting them for degradation before being translated into proteins. Both SINEUP and RNAi techniques have a myriad of research and biotechnology uses, not to mention potential for novel drugs."  Michael Jones, CEO of Cell Guidance Systems commented, "We have had a great initial response from the researchers and biomanufacturing companies. This technology will have a huge impact on cell research and the wider medical field. We are very excited to be involved with this evolving story."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
How Scientists Use DNA to Track Disease Outbreaks
They’re the top questions on everyone’s mind when a new disease outbreak happens: where did the virus come from? When did this happen? How long has it been spreading in a particular country or group of people?
Genetic Risk Factors of Disparate Diseases Share Similar Biological Underpinnings
Penn Institute for Biomedical Informatics and colleagues identify "roadmap" of disease mechanisms to identify candidate drug targets.
Stem Cells Know How to Unwind
Research led by the Babraham Institute with collaborators in the UK, Canada and Japan has revealed a new understanding of how an open genome structure supports the long-term and unrestricted developmental potential in embryonic stem cells.
Childhood Asthma Research Receives $2M
Research into the impact of a child’s upbringing and social and physical environments on the development of asthma will receive $2 million to tackle the condition that affects as many as one in three Canadians.
Five New Breast Cancer Genes Found
Discovery of mutations paves the way for personalised treatment of breast cancer.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!