Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Humans and Chimps Share Genetic Strategy in Battle Against Pathogens

Published: Tuesday, February 19, 2013
Last Updated: Tuesday, February 19, 2013
Bookmark and Share
Findings point to common ancestry.

A genome-wide analysis searching for evidence of long-lived balancing selection—where the evolutionary process acts not to select the single best adaptation but to maintain genetic variation in a population—has uncovered at least six regions of the genome where humans and chimpanzees share the same combination of genetic variants.

The finding, to be published Feb. 14 in the journal Science, suggests that in these regions, human genetic variation dates back to a common ancestor with chimpanzees millions of years ago, before the species split. It also highlights the importance of the dynamic co-evolution of human hosts and their pathogens in maintaining genetic variation.

Balancing selection allows evolution to keep all hereditary options open. The classic human example is the persistence of two versions of the hemoglobin gene: a normal version and hemoglobin S., a mutation that distorts the shape and function of red blood cells. Those who inherit two normal hemoglobin genes are at high risk for malaria, a parasitic disease that infects more than 200 million people each year. Those who inherit one normal gene and one hemoglobin S. gene are partially protected from malaria—a potentially life-saving benefit. Those with two copies of the gene suffer from sickle-cell anemia, a serious and lifelong circulatory disease.

“When we looked for genetic clues pointing to other, more ancient, examples of balancing selection, we found strong evidence for at least six such regions and weaker evidence for another 119—many more than we expected,” said study author Molly Przeworski, PhD, professor of human genetics and of ecology and evolution at the University of Chicago.

“We don’t yet know what their functions are,” she said. None of the six regions codes for a protein. There are clues that they are involved in host-pathogen interactions, “but which pathogens, what immune processes,” she said, “we don’t know.”

The researchers used genetic data from 10 chimpanzees from Western Africa and 59 humans from sub-Saharan Africa who were part of the 1,000 Genomes Project.

The scientists looked for cases in which genetic variations that arose in the ancestor of humans and chimpanzees have been maintained through both lines. The fact that variation in these regions of the genome has persisted for so long argues that they “must have been functionally important over evolutionary time,” said Ellen Leffler, a graduate student in Przeworski’s laboratory and first author of the study.

The researchers, from the University of Chicago and Oxford University, designed the study to be very conservative. “We wanted to find the cases we believed the most, rather than the most cases,” Przeworski said.

Computers sorted snippets of the genetic data from humans and chimps into clusters, depending on how similar the subjects were to each other. For almost every snippet, they found a cluster of humans and a separate cluster of chimpanzees, as expected. But there were a few segments of the genomes in which each cluster included both chimpanzees and humans; in those regions, some humans were more closely related to some chimpanzees than to other humans.

“Instances in which natural selection maintains genetic variation in a population over millions of years are thought to be extremely rare,” the authors wrote. The oldest and best known example of balanced polymorphism shared between humans and chimpanzees is the major histocompatibility complex (MHC), a group of genes that help the immune system distinguish between the body and potential invaders, such as bacteria or viruses.

Last year, a team led by Przeworski found that humans and gibbons shared genetic variation related to the ABO blood-group system from a common ancestor.
The six new examples of balanced selection described in this study appear to play a role, like the

MHC, in fending off infectious disease. This requires a variety of evolutionary tools, including balancing selection. When a population moves to a new environment—for example the exodus out of Africa to northern Europe—they face many one-time adjustments, such as adapting to less intense sunlight and decreased ultraviolet radiation. Over many generations, their offspring manage to decrease melanin production—a static adaptation for a static environment.

Fighting off pathogens is more dynamic, a constant arms race. Balancing selection may have enabled humans and chimps to retain multiple lines of defense that can be called on when a pathogen evolves new weapons.

“Our results imply that dynamic co-evolution of human hosts and their pathogens has played an important role in shaping human variation,” Przeworski said. “This highlights the importance of a different kind of selection pressure in human evolution.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Form of DNA Modification May Carry Inheritable Information
Scientists have described the surprising discovery and function of a new DNA modification in insects, worms and algae.
Friday, May 08, 2015
Researchers Identify ‘Fat Gene’ Associated with Obesity
Mutations within the gene FTO have been implicated as the strongest genetic determinant of obesity risk in humans, but the mechanism behind this link remained unknown.
Monday, March 17, 2014
Genetic Analysis Reveals Insights into Genetics of OCD, Tourette’s
Major differences between the genetic makeup of obsessive-compulsive disorder and Tourette’s syndrome, providing the first direct confirmation that both are highly heritable.
Tuesday, November 05, 2013
Graeme Bell Receives International Diabetes Prize
Prize includes a certificate of honor, a Japanese objet d’art and a $150,000 prize.
Tuesday, December 18, 2012
Study Points to New Target for Cancers Resistant to Certain Drugs
A more sensitive method to analyze protein interactions has uncovered a new way that cancer cells may use the cell-surface molecule HER3 to drive tumor progression following treatment with HER1 and HER2 inhibitors.
Tuesday, September 11, 2012
Grapefruit Juice Lets Patients Take Lower Dose of Cancer Drug
First cancer study to harness drug-food interaction.
Thursday, August 09, 2012
Guidelines for Prostate Screening Widely Ignored, Study Finds
2008 recommendations from federal task force had no impact.
Monday, April 30, 2012
Chicago Cancer Genome Project Studies Genetics of 1,000 Tumors
Analyzing the genetics of cancers from different parts of the body may reveal surprising details for treatment and prevention.
Tuesday, December 29, 2009
Metabolic Syndrome Linked to Cold Tolerance
Researchers discover that many of the genetic variations that have enabled human populations to tolerate colder climates may also affect their susceptibility to metabolic syndrome.
Monday, February 18, 2008
Mutations in the Insulin Gene can Cause Neonatal Diabetes
Mutations in the insulin gene can cause permanent neonatal diabetes that affects very young children and results in lifelong dependence on insulin injections.
Friday, September 14, 2007
Microfluidics Gives Boost to Protein Crystallization Studies
A team of investigators have developed a nanoliter microfluidic device that can conduct approximately 1,900 crystallization experiments per hour.
Friday, January 19, 2007
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!