Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

When It Comes to Genetic Code, Optimum Isn't Always Best

Published: Friday, February 22, 2013
Last Updated: Friday, February 22, 2013
Bookmark and Share
Imagine two steel springs identical in look and composition but that perform differently because each was tempered at a different rate.

A team of researchers including a Texas A&M University molecular biologist has shown that concept -- that the speed of creation affects performance -- applies to how a protein they studied impacts an organism's circadian clock function. This discovery provides new insights into the significance of the genetic code for controlling the rates at which critically important proteins are synthesized, and could lead to better understanding of cancers and other diseases.

"Living organisms' inner clocks are like Swiss watches with precisely manufactured spring mechanisms," said Matthew Sachs, a professor in the Texas A&M Department of Biology. "For example, if you fast-temper a critical spring, the watch may be unable to keep time, as opposed to slow-tempering it. It's not just about the composition of the components, such as which alloy is used. It's about the manner in which the components are made. Our research says the genetic code is important for determining both composition and fabrication rate for a central component of the circadian clock, and that the fabrication rate also is critical. And that's essentially a discovery."

The research, funded in part by the National Institutes of Health and the Houston-based Welch Foundation, was selected for Advanced Online Publication (AOP) in the prestigious journal Nature.

The team, which is led by Yi Liu, a researcher in the Department of Physiology at the University of Texas Southwestern Medical Center, was perplexed when it found a paradoxical result years ago: that optimizing the use of codons (a sequence of three nucleotides that form a unit of genetic code in a DNA or RNA molecule) specifying an essential biological clock component actually abolished the organism's circadian rhythms.

The group's research indicates that the protein in the fungal genus Neurospora they studied, frequency, performs better when the genetic code specifying it has non-optimal codon usage, as is normally found. However, when the genetic code is deliberately altered so that codon usage is optimized, clock function is lost. The reason for this is that non-optimal codon usage slows translation of the genetic code into protein, allotting the frequency protein the necessary time to achieve its optimal protein structure.

The team's results also demonstrate that genetic codons do more than simply determine the amino acid sequence of a protein as previously thought: They also affect how much protein can be made as well as the functional quality of that protein.

"We found that less is more, in many cases," Liu said.

Because many genetic diseases are the result of improperly functioning proteins, Sachs says knowledge about how proteins are made and why they have impaired functions is critical to understanding almost all diseases.

"Understanding gene expression is crucial for understanding cancer and other diseases, because ultimately many of these processes involve either mutations of genes or altered expression of genes," said Sachs, who was asked by Liu to help on the research because of his translational expertise in Neurospora.

In addition to Liu and Sachs, the paper's authors include Mian Zhou, Jinhu Guo, Joonseok Cha and Michael Chae, all from the Department of Physiology at UT Southwestern Medical Center; She Chen from the National Institute of Biological Sciences in Beijing; and Jose M. Barral from the Departments of Neuroscience and Cell Biology and Biochemistry and Molecular Biology at UT Medical Branch in Galveston.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos