Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

AAAS Annual Meeting Puts MIT Science and Technology on Display

Published: Friday, February 22, 2013
Last Updated: Friday, February 22, 2013
Bookmark and Share
The 2013 conference, held last week in Boston, featured research presentations, hands-on demonstrations.

The annual meeting of the American Association for the Advancement of Science (AAAS) took place Feb. 14-18 at Boston’s Hynes Convention Center. The gathering highlighted a diverse roster of MIT researchers presenting work on everything from human-robot interactions to the convergence of biology and engineering, as well as hands-on demonstrations ranging from tiny model rockets to Lego models of chemical reactions in the atmosphere.

Nearly 10,000 scientists and citizens registered for the conference, including more than 900 journalists from around the world. MIT was represented by about a dozen faculty members and other speakers who presented talks on their research, as well as by students and staffers who engaged in demonstrations at the event’s Family Science Days.

In the dark

Samuel Ting, the Thomas P. Cabot Professor of Physics, summarized 18 years of work to develop a $1.5 billion set of instruments for the International Space Station. Some in attendance had expected that he might use the occasion to present the long-awaited first results of experiments designed to search for direct signs of dark matter in the universe, but Ting said the research team, which consists of six separate groups, was still finishing its analysis of the data and expected to make an announcement in several weeks.

“Everybody has their own interpretations,” Ting said, noting that one of the six teams “has very different theories” from the others. “Certainly we are not going to publish something if it’s not worthwhile.”

Ting said the experiment has examined about 25 billion “events” — impacts by cosmic rays — to search for differences in the ratio of electrons to their antimatter counterparts, called positrons, and for any differences in emissions from different parts of the sky.

Converging on convergence


In another session, Institute Professor Phillip Sharp said that scientific convergence — the ongoing merger of the life, physical and engineering sciences — represents an important new research model for biomedicine. “Convergence will be the emerging paradigm for how medical research will be conducted in the future,” he said, but added that serious policy challenges that must be resolved in order to realize this potential.

Speaking in the same session, Tyler Jacks, the David H. Koch Professor of Biology and director of MIT’s David H. Koch Institute for Integrative Cancer Research, added that this radically new approach holds the potential to chart a new course in cancer research by revolutionizing the disease’s diagnosis, monitoring and treatment.

On a similar theme, Institute Professor Robert Langer spoke on “Challenges and Opportunities at the Confluence of Biotechnology and Nanomaterials.” He described great progress in recent years in the development and commercialization of biomedical innovations through collaboration with materials scientists and engineers.

Hundreds of families, billions of experiments

On Saturday and Sunday, hundreds of families flocked to the AAAS meeting for Family Science Days, which included a series of talks, exhibits and hands-on activities. There, Angela Belcher, the W.M. Keck Professor of Energy, described her lab’s work to harness the power of biological organisms to create new technologies.

“How many of you have ever done a billion experiments?” she asked a group of parents and children, none of whom raised their hands.

In her lab, Belcher explained, it is now possible to do a billion experiments at once, using a beaker full of viruses to extract elements from water and assemble them into batteries or solar cells. She then demonstrated such a virus-built battery in action — a demonstration that she said she had also shown to President Barack Obama during his 2009 visit to MIT.

Other hands-on activities used Lego blocks to show the molecular structure of DNA; gave children a chance to launch tiny, antacid-powered “rockets” made from paper and empty film canisters; and demonstrated airplane-wing function using a miniature wind tunnel and vapor from dry ice. MIT’s D-Lab, which aims to create technologies for use in developing nations, mounted an exhibit that gave children a chance to try out some D-Lab inventions — including devices for shelling corn and for making charcoal briquettes out of charred agricultural waste.

The human side of science

Other talks at the AAAS conference explored subjects in the social sciences, or at the interface between science, technology and the arts. Michel DeGraff, an associate professor of linguistics, described his analysis of Haitian Creole, which has shown that in many ways its structures are more complex than those of related languages. Felice Frankel, a research scientist at MIT’s Center for Materials Science and Engineering, delivered a lecture in which she showed how diagrams, photographs and other research graphics could be improved through a focus on conveying only the most important information in an image.

In a keynote address before a packed auditorium, Sherry Turkle, the Abby Rockefeller Mauzé Professor of the Social Studies of Science and Technology, described her concern at the growing trend of transferring a variety of human-centered tasks, such as the care of children and the elderly, from human caregivers to robots. People too readily act as if machines have personalities, and even feelings, she said. This “new normal,” she added, “comes with a price,” and may ultimately change human relationships for the worse.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protecting Privacy in Genomic Databases
System helps ensure databases used in medical research will not leak patients’ personal information.
Wednesday, August 10, 2016
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Wednesday, July 27, 2016
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Friday, July 08, 2016
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Friday, May 27, 2016
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
Monday, April 04, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
A New Way to Discover DNA Modifications
Researchers systematically find molecules that help regulate and protect DNA.
Wednesday, March 02, 2016
Mapping Regulatory Elements
Systematically searching DNA for regulatory elements indicates limits of previous thinking
Wednesday, February 03, 2016
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
Wednesday, February 03, 2016
Supply Chain
Chemists discover how a single enzyme maintains a cell’s pool of DNA building blocks.
Wednesday, January 13, 2016
How Cancer Cells Spread
Study offers new targets for drugs that may prevent cancer from spreading.
Thursday, December 17, 2015
Scaling Up Synthetic-Biology Innovation
MIT professor’s startup makes synthesizing genes many times more cost effective.
Monday, December 14, 2015
Delivering microRNAs for Cancer Treatment
Scientists exploit gene therapy to shrink tumors in mice with an aggressive form of breast cancer.
Wednesday, December 09, 2015
CRISPR-Cas9 Genome Editing Hurdle Overcome
Team re-engineers system to dramatically cut down on editing errors; improvements advance future human applications.
Thursday, December 03, 2015
Scientific News
Emerging Model of Cancer
Cancer acts cooperatively, making individual decisions but acting in unison; this insight is being used to create a computer model of cancer.
Biological Barcodes Using CRISPR
Using genome editing tools, researchers are getting closer to understand differentiation of various cell types during development.
Controlling DNA Repair
Scientists discover that DNA repair outcomes following CRISPR-Cas9 cleaving are non-random and can be harnessed to produce desired effects.
Demonstrating LNP Delivery of CRISPR Components
Intellia has presented data demonstrating in vivo gene editing ising liquid nanoparticles (LNPs) to deliver CRISPR/Cas9.
Gene Therapy Via Ultrasound
Research into a gene therapy approach called sonoporation could help combat heart disease and cancer.
Creating Embryos with 'Heteroplasmy'
New discovery in genetic research could lead to treatments for mitochondrial diseases.
Proteins Preserve Vital Genetic Data
Research has shown how two key proteins bring about the oragnization of chromosomes and our genome.
Novel MRI Technique Distinguishes Healthy Prostate Tissue from Cancer
The UTSW researchers have determined that glucose stimulates release of the zinc ions from inside epithelial cells, which they could then track on MRIs.
Eye Colour Determines Cancer Risk
Researchers report first findings of a link between eye pigment gene and uveal melanoma development.
Telomere Replenishment in Real Time
Researchers have visualised the process of telomere attachment to chromosomes through single-molecule imaging.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!