Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gallo Center Scientists Identify Potential New Mechanism for Treating Problem Drinking

Published: Monday, February 25, 2013
Last Updated: Monday, February 25, 2013
Bookmark and Share
Researchers identified a potential new approach for reducing problem drinking: a new family of drugs with the ability to manipulate DNA structure without changing it.

The drugs, already approved for human use for other indications, reduced drinking and alcohol-seeking behavior in pre-clinical models — mice and rats trained to drink large quantities of alcohol.

The animals in the study, which was published today in the advance online edition of Translational Psychiatry, were trained to mimic so-called “problem drinkers,” not-yet-full-blown alcoholics, said senior author Dorit Ron, PhD, a Gallo Center investigator and a professor of neurology at UCSF.

“They consumed large quantities of alcohol and drank in binges, but were not yet physically dependent on alcohol,” she said. “In humans, these drugs could represent a promising new direction in preventing drinkers from going on to become fully addicted.”

The drugs, which inhibit enzymes called DNMT and HDAC, are currently being used to treat several types of cancer and show promise as medications for the treatment of mood disorders.

The study presents “a potential new mechanism to control excessive drinking,” said Ron.

The drugs act by modifying the structure of chromatin – a combination of DNA and proteins known as histones -- without affecting the composition of DNA itself, Ron said.

“Normally, changes on the DNA sequence called methylation lead to tightening of the chromatin structure, which prevents the expression of certain genes,” she said. “Conversely, a change in histones called acetylation leads to the opening of the DNA structure, allowing certain genes to be expressed.” DNMT inhibitors, which prevent methylation, and HDAC inhibitors, which promote acetylation, both act to loosen DNA structure, which in turn allows gene expression.

In the study, Ron and her research team trained mice to drink a solution of 20 percent alcohol. Mice that were given a DNMT inhibitor called 5-AzaC or HDAC inhibitors drank significantly less than mice that were not given the DNMT inhibitor.

Rats were also trained to self-administer drinks of alcohol by pressing a lever. Rats given SAHA, an HDAC inhibitor, showed significantly less alcohol-seeking behavior.

Importantly, in both mice and rats, the consumption of water, saccharine solution and sugar solution remained unchanged. “This means that these drugs specifically target alcohol without affecting the pleasure centers of the brain,” said Ron. “For people who have problems with alcohol, this would be a real improvement over current abuse medications, which suppress pleasure in general, leading to problems with compliance.”

Ron noted that alcohol use disorders represent a significant threat to public health worldwide, causing or being associated with a wide variety of physical and psychiatric illnesses. She called the study “an important example of pre-clinical, translational research, where findings in basic science lead straight to the possibility of clinical studies.”

Co-authors of the study are Vincent Warnault, PhD, and Emmanuel Darcq, PhD, of the Gallo Center and UCSF; Amir Levine, MD, of Columbia University; and Segev Barak, PhD, who was with Gallo and UCSF at the time of the study.

The study was supported by funds from the National Institutes of Health and the State of California through UCSF.

The UCSF-affiliated Ernest Gallo Clinic and Research Center is one of the world’s preeminent academic centers for the study of the biological basis of alcohol and substance use disorders. Gallo Center discoveries of potential molecular targets for the development of therapeutic medications are extended through preclinical and proof-of-concept clinical studies.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!