Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Cellectis Announced Collaboration Agreement with Stemgent

Published: Monday, March 11, 2013
Last Updated: Sunday, March 10, 2013
Bookmark and Share
Agreement to provide custom genome-engineered iPS cells.

Cellectis Bioresearch has announced a collaboration agreement with Stemgent, Inc. to provide research services that combines mRNA reprogramming technology and genome engineering.

The partnership marries Cellectis bioresearch’s leadership in genome engineering with Stemgent’s expertise in cellular reprogramming.

Stemgent’s proprietary mRNA reprogramming technology addresses the challenges around deriving non-viral non-integrating clinically-relevant induced pluripotent stem (iPS) cells for use in regenerative medicine drug discovery and basic research.

Traditional reprogramming methods can lead to the integration of unwanted genetic material into the host genome and therefore can be disruptive to the reprogrammed cell’s function.

Targeted genome engineering is a powerful technology that can be used to elucidate the genetic basis of diseases and to evaluate drug candidates through the generation of cell-based assays.

Cellectis bioresearch’s TALEN™-based genome engineering technology enables the directed introduction of disease-specific genetic mutations to mimic disease and of reporter genes with fluorescent/luminescent tags to evaluate drug candidate efficacy specificity and toxicity.

Together these two powerful technologies pave the way for clinically-relevant applications in regenerative medicine.

Cellectis Group CEO André Choulika said “The collaboration between Stemgent and Cellectis fits with our mission to enable scientists worldwide with the tools to generate genome-engineered iPS cells for use in their research and regenerative medicine.”

“Drug toxicity testing is an important part of early-stage drug development continued Ian Ratcliffe Stemgent President and CEO. “The challenge researchers face is that current models to test drugs are often inadequate. With this partnership and the combined technologies we can introduce mutations into reprogrammed cells and differentiate them into downstream lineages. Researchers can utilize these cells to test how mutations known and unknown alter the biology of the cells upon exposure to drugs.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Genes That Protect African Children From Developing Malaria Identified
Variations in DNA at a specific location on the genome that protect African children from developing severe malaria, in some cases nearly halving a child’s chance of developing the life-threatening disease, have been identified in the largest genetic association study of malaria to date.
Researchers Disguise Drugs As Platelets to Target Cancer
Researchers have for the first time developed a technique that coats anticancer drugs in membranes made from a patient’s own platelets.
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Five Genetic Regions Implicated In Cystic Fibrosis Severity
An international consortium of researchers conducted the largest-ever CF genome-wide analysis to find new therapeutic targets.
Greater Understanding Of Polycystic Ovary Syndrome
A new genetic study of over 200,000 women reveals the underlying mechanisms of polycystic ovary syndrome, as well as potential interventions.
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
A Fundamental Protection Mechanism Against Formalin In Mammals is Revealed
Formaldehyde, or formalin, is well known to all of us as a common chemical used in many industrial processes and also as a preservative, remarkably we also produce formaldehyde in our bodies.
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos