Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Illinois State University Use NTA in the Development of Novel Bioanalytical Assays

Published: Friday, March 15, 2013
Last Updated: Friday, March 15, 2013
Bookmark and Share
Development of novel bioanalytical assays to detect nucleic acids, proteins, and whole viruses.

NanoSight reports on how Nanoparticle Tracking Analysis, NTA, is being used in the development of novel bioanalytical assays at Illinois State University.

The main application is the characterization of gold nanoparticles and differentiation between monodisperse samples from small numbers of aggregated materials.

Speeding up the detection and identification of viruses is one of the areas of new research of Illinois State University Assistant Professor of Chemistry Jeremy Driskell.

This has been recognized by the US Department of Defense in their recent award of a major grant. Reliable and accurate nanoparticle composition is important in such work.

Here, Dr Driskell describes how he has used various techniques.

Talking about his current work, Dr Driskell says "Our research group is focused on the development of novel bioanalytical assays which includes detection of nucleic acids, proteins, and whole viruses. While other groups aim to improve assay sensitivity or detection limits, our central focus is on reducing assay speed and complexity. We are currently using gold nanoparticles and gold filters to develop assays utilizing surface-enhanced Raman spectroscopy for detection. In the process of characterizing the gold nanoparticles and monitoring the modification steps required for the SERS assays, we found that particle sizing techniques such as Dynamic Light Scattering (DLS) and Nanoparticle Tracking Analysis (NTA) could also be used for assay readout. This finding and application is detailed in our recent publication in the Analyst."

Dr Driskell continued: "We began by using DLS to characterize gold nanoparticles that we modify with Raman reporter molecules and antibodies. This was a simple means of detecting particle aggregation as a result of surface modification and is more sensitive than colorimetric detection, which we found was not useful for conditions that invoked slight aggregation. When we learned of NanoSight and NTA, we compared the data to DLS. For our purposes, NTA gave a much more accurate representation of the actual particle sizes in our solutions. DLS would frequently indicate aggregation of a nanoparticle population while NTA revealed few large aggregates while the majority of the particles remained monodisperse. Ultimately we concluded it was a better technique to give us a better understanding of nanoparticle composition (aggregates compared with individual particles) in terms of absolute numbers."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Method Development to Estimate the Purity of Vesicle Preparations
Nanoparticle tracking analysis is used to estimate the purity of vesicle preparations at the Cardiff University School of Medicine.
Thursday, February 28, 2013
Duke University Uses NTA to Characterize "Nanoconstructs" for Biomedical Applications
NTA to characterize metal nanoparticle construct materials for use in biosensing, imaging and cancer therapy.
Friday, April 20, 2012
Scientific News
AACR 2016: Cancer Immunotherapy and Beyond
At this year's meeting there was a palpable buzz around subjects ranging from microbiomics to the tumor microenvironment and cancer vaccines, big data to in vitro and in vivo modeling and drug delivery (to name just a few).
Shining A Light On Bladder Cancer
Researchers scrutinize patterns of mutations in bladder tumor genomes, gleaning insights into the roles of DNA repair and tobacco-related DNA damage.
Monovar Drills Down Into Cancer Genome
Rice, MD Anderson develop program to ID mutations in single cancer cells.
Autism, Cancer Share a Remarkable Number of Risk Genes
Researchers with the UC Davis Comprehensive Cancer Center, MIND Institute identify more than 40 common genes.
Number Of Known Genetic Risk Factors For Endometrial Cancer Doubled
An international collaboration of researchers has identified five new gene regions that increase a woman’s risk of developing endometrial cancer, one of the most common cancers to affect women, taking the number of known gene regions associated with the disease to nine.
Genetic Variant May Help Explain Why Labradors Are Prone To Obesity
A genetic variation associated with obesity and appetite in Labrador retrievers – the UK and US’s favourite dog breed – has been identified by scientists at the University of Cambridge. The finding may explain why Labrador retrievers are more likely to become obese than dogs of other breeds.
How Scientists Use DNA to Track Disease Outbreaks
They’re the top questions on everyone’s mind when a new disease outbreak happens: where did the virus come from? When did this happen? How long has it been spreading in a particular country or group of people?
Genetic Risk Factors of Disparate Diseases Share Similar Biological Underpinnings
Penn Institute for Biomedical Informatics and colleagues identify "roadmap" of disease mechanisms to identify candidate drug targets.
Stem Cells Know How to Unwind
Research led by the Babraham Institute with collaborators in the UK, Canada and Japan has revealed a new understanding of how an open genome structure supports the long-term and unrestricted developmental potential in embryonic stem cells.
Childhood Asthma Research Receives $2M
Research into the impact of a child’s upbringing and social and physical environments on the development of asthma will receive $2 million to tackle the condition that affects as many as one in three Canadians.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!