Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

The Genetics of Age-Related Macular Degeneration

Published: Friday, March 15, 2013
Last Updated: Friday, March 15, 2013
Bookmark and Share
The study appeared online on March 3, 2013, in Nature Genetics.

An international group of researchers discovered 7 regions of the human genome associated with an increased risk of age-related macular degeneration (AMD), a leading cause of blindness.

The group also confirmed 12 regions identified in previous studies. The findings may eventually lead to new treatment and prevention approaches to AMD.

AMD gradually destroys sharp, central vision as a person ages. The disease affects the macula, a region of the retina responsible for central vision. We rely on the macula for tasks that require sharp vision, such as reading, driving and recognizing faces.

As AMD progresses, these tasks become more difficult. Some kinds of AMD are treatable if detected early, but no cure exists. An estimated 2 million Americans have AMD.

Scientists have found that age, diet and smoking influence the risk of developing AMD. Genetics also plays a strong role. AMD often runs in families and is more common among certain ethnicities, such as people of Asian or European descent.

Genome-wide association studies (GWAS) have previously uncovered genetic factors linked to AMD risk. These studies involve scanning the entire human genome for genetic differences between people with AMD and matched controls. The larger the GWAS, the greater its ability to uncover relevant variations.

The new study was carried out by the AMD Gene Consortium, a network of international investigators supported by NIH’s National Eye Institute (NEI). It represents the most comprehensive analysis of genetic variations associated with AMD to date.

The researchers analyzed data from more than 17,100 people with the most advanced and severe forms of AMD, and more than 60,000 people without AMD.

The scientists identified 7 new genetic regions, or loci, associated with AMD. As with the 12 found in previous studies, these 7 are scattered throughout the genome on different chromosomes.

The 19 loci together implicate a variety of biological functions, including regulation of the immune system, maintenance of cellular structure, the growth and permeability of blood vessels, lipid metabolism and atherosclerosis.

“A large number of samples was needed to detect additional genetic variants that have small but significant influences on a person’s disease risk,” says NEI’s Dr. Hemin Chin, who assembled the consortium and helped coordinate the study.

Dr. Chin continued, “By cataloging genetic variations associated with AMD, scientists are better equipped to target corresponding biological pathways and study how they might interact and change with age or other factors, such as smoking.”

The 19 genomic regions identified by this work will help guide scientists searching for the underlying causes of AMD.

Eventually, these discoveries may help inform the development of new diagnostic and treatment strategies.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cellular Factors that Shape the 3D Landscape of the Genome Identified
Researchers have identified 50 cellular factors required for the proper 3D positioning of genes by using novel large-scale imaging technology.
Tuesday, August 18, 2015
Nuclear Process in the Brain That May Affect Disease Uncovered
Scientists have shown that the passage of molecules through the nucleus of a star-shaped brain cell, called an astrocyte, may play a critical role in health and disease.
Tuesday, August 18, 2015
Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Scientists Adopt New Strategy to Find Huntington’s Disease Therapies
Large, international NIH-supported study uses precision medicine to tackle neurological disorders.
Tuesday, August 11, 2015
Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
NIH Study Identifies Gene Variant Linked to Compulsive Drinking
Mice carrying the Met68BDNF gene variant would consume excessive amounts of alcohol.
Tuesday, July 21, 2015
In Blinding Eye Disease, Trash-Collecting Cells Go Awry, Accelerate Damage
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Friday, July 03, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
NCI-MATCH Trial will Link Targeted Cancer Drugs to Gene Abnormalities
Precision medicine trial will open to patient enrollment in July.
Tuesday, June 09, 2015
A New Role for Zebrafish: Larger Scale Gene Function Studies
A relatively new method of targeting specific DNA sequences in zebrafish could dramatically accelerate the discovery of gene function and the identification of disease genes in humans.
Monday, June 08, 2015
NIH Researchers Pilot Predictive Medicine by Studying Healthy People’s DNA
New study sequence the genomes of healthy participants to find “putative,” or presumed, mutations.
Friday, June 05, 2015
Linking Targeted Cancer Drugs to Gene Abnormalities
Investigators at the NIH have announced a series of clinical trials that will study drugs or drug combinations that target specific genetic mutations.
Wednesday, June 03, 2015
Scientists Create Mice with a Major Genetic Cause of ALS and FTD
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Friday, May 22, 2015
Mice With a Major Genetic Cause of ALS and FTD Created
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Thursday, May 21, 2015
New Insights into How DNA Differences Influence Gene Activity, Disease Susceptibility
NIH-funded pilot study provides a new resource about variants across the human genome.
Friday, May 08, 2015
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!