Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genetic Mechanism could Trigger Long-term Memory

Published: Tuesday, March 26, 2013
Last Updated: Tuesday, March 26, 2013
Bookmark and Share
The researchers believe the discovery of this mechanism adds another piece to the puzzle in the ongoing effort to uncover the mysteries of memory.

In a study led by Marcelo Wood of UC Irvine's Center for the Neurobiology of Learning & Memory, the team investigated the role of this mechanism — a gene designated Baf53b — in long-term memory formation. Baf53b is one of several proteins making up a molecular complex called nBAF.

Mutations in the proteins of the nBAF complex have been linked to several intellectual disorders, including Coffin-Siris syndrome, Nicolaides-Baraitser syndrome and sporadic autism. One of the key questions the researchers addressed is how mutations in components of the nBAF complex lead to cognitive impairments.

In their study, Wood and his colleagues used mice bred with mutations in Baf53b. While this genetic modification did not affect the mice's ability to learn, it did notably inhibit long-term memories from forming and severely impaired synaptic function.

"These findings present a whole new way to look at how long-term memories form," said Wood, associate professor of neurobiology & behavior. "They also provide a mechanism by which mutations in the proteins of the nBAF complex may underlie the development of intellectual disability disorders characterized by significant cognitive impairments."

How does this mechanism regulate gene expression required for long-term memory formation? Most genes are tightly packaged by a chromatin structure - chromatin being what compacts DNA so that it fits inside the nucleus of a cell. That compaction mechanism represses gene expression. Baf53b, and the nBAF complex, physically open the chromatin structure so specific genes required for long-term memory formation are turned on. The mutated forms of Baf53b did not allow for this necessary gene expression.

"The results from this study reveal a powerful new mechanism that increases our understanding of how genes are regulated for memory formation," Wood said. "Our next step is to identify the key genes the nBAF complex regulates. With that information, we can begin to understand what can go wrong in intellectual disability disorders, which paves a path toward possible therapeutics."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Monday, October 19, 2015
Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Rare Childhood Leukemia Reveals Surprising Genetic Secrets
A coalition of leukemia researchers led by scientists from UC San Francisco has discovered surprising genetic diversity in juvenile myelomonocytic leukemia (JMML), a rare but aggressive childhood blood cancer.
Thursday, October 15, 2015
Double Enzyme Hit May Explain Common Cancer Drug Side Effect
Mouse study suggests genomic screening before treatment may help prevent anemia.
Wednesday, October 14, 2015
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
Scientific News
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
The Spice of Life
Scientists discover important genetic source of human diversity.
Removing Race from Human Genetic Research
A group of scientists are urging their colleagues to take a step forward and stop using racial categories when researching and studying human genetics.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!