Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Insights into How Genes Turn On and Off

Published: Thursday, March 28, 2013
Last Updated: Thursday, March 28, 2013
Bookmark and Share
Researchers at UC Davis and the University of British Columbia have shed new light on methylation, a critical process that helps control how genes are expressed.

Working with placentas, the team discovered that 37 percent of the placental genome has regions of lower methylation, called partially methylated domains (PMDs), in which gene expression is turned off. This differs from most human tissues, in which 70 percent of the genome is highly methylated.

While PMDs have been identified in cell lines, this is the first time they have been found in regular human tissue. In addition to enhancing our understanding of epigenetics, this work could influence cancer research and help illuminate how environmental toxins affect fetal development. The paper was published online this week in the Proceedings of the National Academy of Sciences (PNAS).

Since it was unraveled more than ten years ago, the human genome has been the focus of both popular interest and intense scientific focus. But the genome doesn't act alone; there are many factors that influence whether genes are turned on or off. One of these is an epigenetic process called methylation, in which a group of carbon and hydrogen atoms (a methyl group) attaches to DNA, adjusting how genes are expressed.

"I like to think of epigenetics as a layer on top of your genetic code," said senior author Janine LaSalle, professor of medical microbiology and immunology. "It's not the DNA sequence but it layers on top of that - and methylation is the first layer. Those layers provide a lot of information to the cells on where and when to turn on the genes."

How and when genes are activated (or inactivated) can have a profound impact on human development, cancer and the biological legacy of environmental toxins. Prior to this research, PMDs had only been found in cultured cell lines, which led some scientists to wonder if they existed outside the test tube. This study confirms they exist in placental tissue, a critically important window into fetal development.

"The placenta is the interface between mother and fetus," said LaSalle, who is a researcher affiliated with the UC Davis MIND Institute. "It's a time capsule from when a lot of important methylation events occurred."

In addition, placental tissue was interesting to study because it has a number of invasive characteristics often associated with cancer. In fact, a number of cancers, such as breast and colon, have widespread PMDs. LaSalle notes that anti-cancer epigenetic therapies that adjust methylation could be refined based on this improved understanding of PMDs.

This work could also enhance our ability to detect genetic defects. Methylation, and other epigenetic data, provides information that cannot be found in the genome alone. For example, the vast majority of cells in the body contain identical genetic code. However, the added information provided by methylation allows scientists to determine where specific DNA came from.

"Methylation patterns are like fingerprints, showing which tissue that DNA is derived from," LaSalle said. "You can't get that information from just the DNA sequence. As a result, methylation studies could be a very rich source for biomarkers."

In the study, PMDs encompassed 37 percent of the placental genome, including 3,815 genes, around 17 percent of all genes. When found in low-methylation regions, these genes were less likely to be transcribed into proteins. Researchers also found that PMDs also contain more highly methylated CpG islands (genomic areas with large numbers of cytosine-guanine pairs), which are often associated with gene transcriptional silencing of promoters.

Because the placental PMDs contained many genes associated with neuronal development, and specifically autism, LaSalle notes that future research could investigate how epigenetics impacts autism genes at birth.

"We are looking for biomarkers that predict neurodevelopmental outcomes," LaSalle said. "Now we have a series of snap shots from a critical period where we think environmental factors are playing a role in the developing brain."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Monday, October 19, 2015
Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Rare Childhood Leukemia Reveals Surprising Genetic Secrets
A coalition of leukemia researchers led by scientists from UC San Francisco has discovered surprising genetic diversity in juvenile myelomonocytic leukemia (JMML), a rare but aggressive childhood blood cancer.
Thursday, October 15, 2015
Double Enzyme Hit May Explain Common Cancer Drug Side Effect
Mouse study suggests genomic screening before treatment may help prevent anemia.
Wednesday, October 14, 2015
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Deciphering Inactive X Chromosomes
Untangling the Barr body of inactive X chromosomes valuable for understanding chromosome structure and gene expression.
Micro Disease-Detecting Senor Created
Researchers at McMaster University have created a microscopic disease-detecting sensor that can turn on to detect trace amounts of substances.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Understanding Treatment Resistant Melanoma
Researchers have determined how advanced melanoma becomes resistant; a development toward developing treatments.
Investigating ‘Black Box’ of Human Genetics
Investigations into inactive X chromosomes have shown unusual DNA repeat elements are essential for maintaining 3D structure.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!