Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

How to Minimize the Side Effects of Cancer Treatment

Published: Monday, April 08, 2013
Last Updated: Monday, April 08, 2013
Bookmark and Share
Measuring enzyme levels in patients may reveal healthy cells’ ability to survive chemotherapy.

New research from MIT may allow scientists to develop a test that can predict the severity of side effects of some common chemotherapy agents in individual patients, allowing doctors to tailor treatments to minimize the damage.

The study focused on powerful cancer drugs known as alkylating agents, which damage DNA by attaching molecules containing carbon atoms to it. Found in tobacco smoke and in byproducts of fuel combustion, these compounds can actually cause cancer. However, because they can kill tumor cells, very reactive alkylating agents are also used to treat cancer.

The new paper, which appears in the April 4 issue of the journal PLoS Genetics, reveals that the amount of cellular damage that alkylating agents produce in healthy tissues can depend on how much of a certain DNA-repair enzyme is present in those cells. Levels of this enzyme, known as Aag, vary widely among different tissues within an individual, and among different individuals.

Leona Samson, a member of MIT’s Center for Environmental Health Sciences and the David H. Koch Institute for Integrative Cancer Research, is the senior author of the paper. She has previously shown that when alkylating agents damage DNA, the Aag enzyme is called into action as part of a DNA-repair process known as base excision repair. Aag cuts out the DNA base that is damaged, and other enzymes cleave the DNA sugar-phosphate backbone, trim the DNA ends and then fill in the empty spot with new DNA.

In this work, the researchers studied mice engineered to produce varying levels of Aag over a 10- to 15-fold range. This is similar to the natural range found in the human population.

The mice with increased levels of Aag resembled normal mice in their lifespan and likelihood of developing cancer, says Jennifer Calvo, a research scientist in Samson’s lab and lead author of the paper. However, “we found drastic differences when we started challenging them with these alkylating agents,” she says.

Mice with excessive or even normal levels of the Aag enzyme showed much greater levels of cell death in certain tissues after being treated with alkylating agents.

“It’s counterintuitive that extra DNA-repair capacity, or even the normal level, is bad for you,” says Samson, who is a professor of biological engineering and biology at MIT. “It seems that you can have too much of a good thing.”

A fine balance

It appears that too much Aag can upset the balance in the base excision repair pathway, the researchers say. This pathway involves several steps, some of which produce intermediates that can be extremely toxic to the cell if they do not promptly move to the next step. The researchers theorize that when Aag is too active, these toxic intermediates build up and destroy the cell.

Certain organs appear more vulnerable to this Aag-mediated tissue damage — in particular, the retina, pancreas, cerebellum and bone marrow — and the tissue damage is specific to certain types of cells within those tissues. Samson says all of the cells are likely experiencing similar DNA damage, but for some reason they don’t all respond the same way.

“It’s a very cell-specific phenomenon,” she says. “We haven’t completely gotten to the bottom of what it is that makes some cells behave in a certain way when they make zero or extra of a certain enzyme.”

That kind of specificity has not been seen before, notes Samuel Wilson, a principal investigator at the National Institute of Environmental Health Sciences. “It points to a different dynamic for base-lesion repair in different tissues,” says Wilson, who was not involved in the research. “That fundamental question of why there are tissue-specific differences would be very interesting to follow up on.”

The researchers found that an enzyme called Parp1 also plays an important role in Aag-related tissue damage. Parp1 helps to promote the  repair of single-stranded breaks in DNA; such breaks are readily produced after Aag cuts out a damaged base. When Parp1 recognizes such a break, it starts to coat itself with chains of molecules called PolyADP-ribose, which then helps to recruit some of the additional proteins needed to continue the repair process.

When there is too much Aag, Parp1 becomes overactive and begins to deplete the cell’s stores of NAD and ATP, which are critical for energy transfer in cells. Without enough NAD and ATP, the cell goes into an energetic crisis and dies.

Measuring levels of Aag, Parp1 and other enzymes before chemotherapy could be useful for doctors, not only to minimize side effects but also to maximize drugs’ effects on cancer cells, Samson says.

“Aag is just one of many enzymes that you’d probably want to know the level of, and in the end make some kind of matrix to determine what the therapeutic window would be,” she says. “We’re trying to develop ways of measuring the activity of a whole battery of different DNA repair pathways in one mega-assay.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Drug-Resistance Mechanism in Tumor Cells Unravelled
Targeting the RNA-binding protein that promotes resistance could lead to better cancer therapies.
Friday, October 23, 2015
Quantum Physics Meets Genetic Engineering
Researchers use engineered viruses to provide quantum-based enhancement of energy transport.
Friday, October 16, 2015
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Friday, September 25, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Thursday, August 27, 2015
A Metabolic Master Switch Underlying Human Obesity
Researchers find pathway that controls metabolism by prompting fat cells to store or burn fat.
Friday, August 21, 2015
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Friday, July 31, 2015
Firms “Under-invest” in Long-Term Cancer Research
Tweaks to the R&D pipeline could create new drugs and greater social benefit.
Thursday, July 30, 2015
Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Thursday, July 23, 2015
Researchers Develop Genetic Tools to Engineer Common Gut Bacterium
Researchers from the Massachusetts Institute of Technology have developed genetic parts that can be combined to program the commensal gut bacterium Bacteroides thetaiotaomicron.
Friday, July 10, 2015
Longstanding Problem Put to Rest
Proof that a 40-year-old algorithm for comparing genomes is the best possible will come as a relief to computer scientists.
Thursday, June 11, 2015
Diagnosing Cancer with Help from Bacteria
Engineered probiotics can detect tumors in the liver.
Friday, May 29, 2015
Master Gene Regulator Could Be New Target For Schizophrenia Treatment
Researchers at MIT’s Picower Institute for Learning and Memory have identified a master genetic regulator that could account for faulty brain functions that contribute to schizophrenia.
Wednesday, May 27, 2015
Brain Tumor Weakness Identified
Discovery could offer a new target for treatment of glioblastoma.
Thursday, April 09, 2015
Scientific News
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos