Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Device Finds Stray Cancer Cells in Patients’ Blood

Published: Wednesday, April 10, 2013
Last Updated: Wednesday, April 10, 2013
Bookmark and Share
A microfluidic device that captures circulating tumor cells could give doctors a noninvasive way to diagnose and track cancers.

Doctors typically diagnose cancer via a biopsy, which can be invasive and expensive. A better way to diagnose the disease would be to detect telltale tumor cells floating in the bloodstream, but such a test has proved difficult to develop because stray cancer cells are rare, and it’s difficult to separate them from the mélange of cells in circulation.

Now researchers from Massachusetts General Hospital and Harvard Medical School say they’ve built a microfluidic device that can quickly grab nearly any type of tumor cell, an advance that may one day lead to simple blood tests for detecting or tracking cancer.

Similar, existing devices—including earlier versions developed by the authors of the study in Wednesday’s online issue of Science Translational Medicine—depend on tumor-specific biomarkers on the surface of the cells to pull them out of a blood sample, meaning that a given device won’t work for all cancer types. What’s more, the efficiency by which the tumor cells are purified from other cell types is generally low and time-consuming. In a given blood sample, circulating tumor cells are rare—there may be only one tumor cell for every billion cells.

The new device is a “substantial step forward from previous microfluidic devices,” says Peter Kuhn, a circulating-tumor-cell researcher at the Scripps Research Institute. Kuhn was not involved in the study. The device combines existing microfluidic techniques of cell sorting into a single device, he says. The result is that the tumor cells can be pulled out of a blood sample quicker, and without prior knowledge of their molecular characteristics.

Mehmet Toner, director of the BioMicroElectroMechanical Systems Resource Center at MGH, and colleagues report that their latest chip can isolate circulating-tumor cells in the blood, and could apply to all types of cancer. “For our earlier chip, you needed to know something on the surface of the tumor cells,” says Toner. In those devices, a small sample of blood would flow through microfluidic chambers, some of which contained an antibody that grabbed tumor cells. That system also took four to five hours to process a single blood sample. “But for early detection and to make this useful for virtually all cancers, we needed to increase the throughput and to make it [tumor-type] independent,” he says.

Identifying these wandering tumor cells could also help researchers study a cancer’s progression and help doctors track treatments or screen for new cases. By studying the surface proteins or genetic profiles of the cancer cells, doctors and researchers could learn which mutations are present in the cancer and perhaps tailor molecularly targeted treatments accordingly. The authors show that 15 tumor cells were recovered from a blood sample from a prostate cancer patient. The gene expression levels of each cell were studied individually and a mix of mutations was found.

The device developed by Toner’s group combines magnetic labeling of cells and microfluidic sorting to process a sample of blood in about an hour or two. To capture tumor cells regardless of their cancer type, the system first tags white blood cells with magnetic beads that are covered with antibodies that recognize proteins on the surface of the immune cells. The sample is then passed into microfluidic chambers that clear out red blood cells, plasma, and unused free magnetic beads based on their size. Then the device discards the tagged white blood cells using a magnetic field. “In the past, we were focused on tumor cells that we know very little about,” says Toner. “Here, we throw away the cells we know everything about, the blood cells,” he says.

The advantage of the new cell-sorting device over previous attempts is that it successfully brings together multiple technologies, such as size separation and magnetic-tag separation, already used in the field, says Gajus Worthington, president and CEO of Fluidigm, a California company that produces microfluidic devices for biomedical research. “The key thing here is the integration, which is crucial to anything related to single-cell work,” he says. All the steps in Toner’s device take place in similar volumes. “If you have to go from one microstep back to macrostep back to microstep, there are losses and complexity, which leads to noise,” says Worthington.

Toner notes that the Holy Grail for circulating-tumor-cell technology would be to diagnose patients early. “About 10 percent of cancer patients survive if they are diagnosed late, but almost 90 percent survive if they are diagnosed early,” says Toner. But whether or not these circulating tumor cells can be found in early-stage patients is not yet clear, says Luis Diaz, an oncologist at Johns Hopkins University School of Medicine. Diaz was not involved in the study. “Early-stage cancers might release very few cells into circulation,” he says. “That’s historically the problem with circulating tumor cells; you can only find them in advanced cancers.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Friday, July 31, 2015
Firms “Under-invest” in Long-Term Cancer Research
Tweaks to the R&D pipeline could create new drugs and greater social benefit.
Thursday, July 30, 2015
Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Thursday, July 23, 2015
Longstanding Problem Put to Rest
Proof that a 40-year-old algorithm for comparing genomes is the best possible will come as a relief to computer scientists.
Thursday, June 11, 2015
Diagnosing Cancer with Help from Bacteria
Engineered probiotics can detect tumors in the liver.
Friday, May 29, 2015
Master Gene Regulator Could Be New Target For Schizophrenia Treatment
Researchers at MIT’s Picower Institute for Learning and Memory have identified a master genetic regulator that could account for faulty brain functions that contribute to schizophrenia.
Wednesday, May 27, 2015
Brain Tumor Weakness Identified
Discovery could offer a new target for treatment of glioblastoma.
Thursday, April 09, 2015
New Nanodevice Defeats Drug Resistance
Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs.
Wednesday, March 04, 2015
New Nanodevice Defeats Drug Resistance
Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs.
Tuesday, March 03, 2015
Epigenomics of Alzheimer’s Disease Progression
Study of epigenomic modifications reveals immune basis of Alzheimer's disease.
Thursday, February 19, 2015
Proteins Drive Cancer Cells To Change States
When RNA-binding proteins are turned on, cancer cells get locked in a proliferative state.
Monday, December 15, 2014
New Way To Turn Genes On
Technique allows rapid, large-scale studies of gene function.
Thursday, December 11, 2014
New Device Could Make Large Biological Circuits Practical
Innovation from MIT could allow many biological components to be connected to produce predictable effects.
Tuesday, November 25, 2014
Fast Modeling Of Cancer Mutations
New genome-editing technique enables rapid analysis of genes mutated in tumors.
Thursday, October 23, 2014
Chemists Recruit Anthrax to Deliver Cancer Drugs
With some tinkering, a deadly protein becomes an efficient carrier for antibody drugs.
Tuesday, September 30, 2014
Scientific News
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!