Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Droplet Digital™ PCR Improves Detection Sensitivity of Telomerase Activity Assay

Published: Thursday, April 11, 2013
Last Updated: Thursday, April 11, 2013
Bookmark and Share
New research shows that Bio-Rad’s Droplet Digital PCR (ddPCR™) technology can dramatically improve the sensitivity, precision, and throughput of a popular assay for telomerase activity.

Researchers from the University of California, San Francisco, and Bio-Rad Laboratories, Inc. are using Bio-Rad’s ddPCR technology with intercalating dye chemistry to provide absolute quantification of telomerase activity.

Telomeres, the protective structures at the ends of chromosomes, naturally degrade with each cell division. Once they are below a critical length, the cells arrest and become senescent before dying or passing through crisis, incurring additional genomic mutations, and becoming immortalized cancer cells.

One of the mechanisms of immortality is the activation of the telomerase enzyme. This enzyme adds a specific sequence of nucleotide repeats to telomeres, thus rewinding the clock and enabling a cell to divide continuously. Researchers are investigating telomerase activity as a biomarker for cancer diagnosis and as a target for anticancer drugs. Measuring telomerase activity more sensitively may enhance our understanding of its role in oncogenesis and other cellular and physiological phenotypes.

ddPCR Technology Enhances the Telomerase Activity Assay 
Traditionally, the telomerase repeat amplification protocol (TRAP) assay measures the presence of active telomerase by measuring the activity of the enzyme on a starting DNA template, which is then amplified by PCR. For samples with abundant telomerase activity, SYBR® Green qPCR assays deliver high throughput and sufficient sensitivity. However, the most sensitive detection method still requires radioactive labeling, laborious polyacrylamide sequencing gels, and densitometry.

In the cited study, single-molecule counting of telomerase-extended templates was accomplished by partitioning the sample into droplets followed by PCR amplification and detection by fluorescence droplet reading using Bio-Rad’s ddPCR technology. The study results indicate that ddPCR is significantly more sensitive than traditional TRAP radiography and is also more amenable to high-throughput analysis.

“This new (ddPCR TRAP) telomerase activity assay demonstrates the ability to quantify telomerase enzymatic activity in droplets,” said George Karlin-Neumann, director of scientific affairs at Bio-Rad’s Digital Biology Center. “The sensitivity of ddPCR technology enables the measurement of telomerase activity in samples below the detection limit of traditional radiographic methods, while also providing a quick and facile method of measurement in cells where telomerase is more highly expressed.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Awards for Bio-Rad's Protein Expression Products and Genomic Workflow Solutions
BioInformatics LLC has recognized Bio-Rad with two prestigious Life Science Industry Awards for “Best Protein Expression & Analysis Products” and “Best Workflow Solutions — Genomics.”
Monday, January 19, 2015
Droplet Digital PCR Enables Measurement of Potential Cancer Survival Biomarker
Study paves the way for further research into the role of TIL quantification in immunotherapy and as a cancer survival predictor.
Tuesday, December 10, 2013
A Brief RT-qPCR “Field Guide” for MIQE Adherence
Bio-Rad’s Sean Taylor and Eli Mrkusich have published a practical guide for MIQE compliance.
Monday, December 09, 2013
Accurate Detection of Extremely Rare Mitochondrial DNA Deletions Associated with Aging
The study published in Aging Cell identifies a new tool to accurately analyze extremely rare mitochondrial DNA deletions associated with a range of diseases and disorders as well as aging.
Thursday, September 05, 2013
Bio-Rad Announces Mini-Protean Tetra Cell Users Website
The new online social networking site is created for current and new Bio-Rad Mini-PROTEAN® system users.
Wednesday, August 20, 2008
Bio-Rad Launches new Website for Researchers Transfecting Mammalian Cells
Bio-Rad adds ‘Gene Transfer Protocols’ to its Gene Expression Gateway Web-site, dedicated to researchers working with mammalian cells.
Friday, June 27, 2008
Testing Results of the BioOdyssey Calligrapher MiniArrayer for Clinical Research Available
Bio-Rad announces the availability of a technical bulletin describing results of the testing of the BioOdyssey™ Calligrapher™ MiniArrayer.
Thursday, November 08, 2007
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!