Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Abuzz Over Caffeine as Cancer-Cell Killer

Published: Tuesday, April 23, 2013
Last Updated: Tuesday, April 23, 2013
Bookmark and Share
UAlberta research team uses caffeine and fruit flies to pinpoint genetic pathways that guide DNA repair in cancer cells.

Researchers from the University of Alberta are abuzz after using fruit flies to find new ways of taking advantage of caffeine’s lethal effects on cancer cells—results that could one day be used to advance cancer therapies for people.

Previous research has established that caffeine interferes with processes in cancer cells that control DNA repair, a finding that has generated interest in using the stimulant as a chemotherapy treatment. But given the toxic nature of caffeine at high doses, researchers from the faculties of medicine and dentistry and science instead opted to use it to identify genes and pathways responsible for DNA repair.

“The problem in using caffeine directly is that the levels you would need to completely inhibit the pathway involved in this DNA repair process would kill you,” said Shelagh Campbell, co-principal investigator. “We’ve come at it from a different angle to find ways to take advantage of this caffeine sensitivity.”

Lead authors Ran Zhuo and Xiao Li, both PhD candidates, found that fruit flies with a mutant gene called melanoma antigen gene, or MAGE, appeared normal when fed a regular diet but died when fed food supplemented with caffeine.

On closer inspection, the researchers found that the mutant flies’ cells were super-sensitive to caffeine, with the drug triggering “cell suicide” called apoptosis. Flies fed the caffeine-laden diet developed grossly disfigured eyes.

Through this work, the research team identified three genes responsible for a multi-protein complex, called SMC5/SMC6/MAGE, which regulates DNA repair and the control of cell division. Neither process works properly in cancer cells.

Co-principal investigator Rachel Wevrick explains that this finding is significant because it means that scientists one day could be able to take advantage of cancer-cell sensitivity to caffeine by developing targeted treatments for cancers with specific genetic changes. Their results were published in the March issue of the peer-reviewed journal PLOS One.

“Unless you actually know what it is those proteins are doing in the first place to make a cell a cancer cell instead of a normal cell, it’s hard to know what to do with that information,” she says. “You need to know which genes and proteins are the really bad actors, how these proteins work and which of them work in a pathway you know something about where you can actually tailor a treatment around that information.”

Along with Wevrick and Campbell as lead investigators, the project also included biological sciences professor Kirst King-Jones and medical geneticist Sarah Hughes. It’s the type of research-intensive environment that benefits students who gain experience working with peers as part of a team, Wevrick says.

“The U of A has a reputation for co-operation, and that’s not the case everywhere. People here are very willing to share their results and their successes, and work together.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Engineering a Permanent Solution to Genetic Diseases
New method significantly improves the ability of scientists to target specific faulty genes and then “edit” them, replacing the damaged genetic code with healthy DNA.
Wednesday, August 12, 2015
Discovery about DNA Repair Could Lead to Improved Cancer Treatments
Medical researchers have made a basic science discovery that advances the understanding of how DNA repairs itself.
Monday, September 16, 2013
Researchers Draft Recipe for Human Metabolome
Researchers at the University of Alberta have completed the first draft of the human metabolome, the chemical equivalent of the human genome.
Thursday, January 25, 2007
Researcher Unveils World's Largest Drug Database
DrugBank contains detailed chemical, pharmaceutical, medical and molecular biological information on 3000 drug targets.
Friday, January 06, 2006
Scientific News
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
Computational Model Finds New Protein-Protein Interactions
Researchers at University of Pittsburgh have discovered 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!