Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Scientists Find Clues to Some Inherited Heart Diseases

Published: Tuesday, May 07, 2013
Last Updated: Tuesday, May 07, 2013
Bookmark and Share
Cornell researchers have uncovered the basic cell biology that helps explain heart defects found in diseases known as laminopathies.

The findings, published online May 5 in Nature, reveal possible places in a biological pathway where drug therapies may eventually be applied to treat the heart disease associated with such diverse diseases as Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy and limb-girdle muscular dystrophy.

Many laminopathies, caused by mutations to the so-called LMNA gene, affect skeletal and cardiac muscles for reasons that have not been well understood. The LMNA gene codes for the proteins lamin A and C, which provide stability to the cell’s nucleus and play important roles in gene regulation.

In order to study heart failure associated with laminopathies, the researchers made use of existing mouse models – mice bred for research that may have an existing, inbred or induced disease that is similar to a human condition. One of the mouse models has mutations in the LMNA gene that produces mice with enlarged hearts that failed, leading to death at eight to 10 weeks of age. Another mouse model used in the study completely lacks lamins A and C, and the mice develop muscular dystrophy with similar heart conditions that cause death at around four to eight weeks of age, said Jan Lammerding, the paper’s senior author, assistant professor in the Weill Institute for Cell and Molecular Biology and the Department of Biomedical Engineering.

In normal cells, a signaling protein called MLK1 resides in the cell’s body, outside of the nucleus. MLK1 binds to a protein called G-actin, which covers up a code on MLK1’s surface that permits entry into the cell’s nucleus. When the cell is mechanically stressed or exposed to specific growth factors, “an adaptive response occurs to reinforce the muscle cell to be fully functional,” said Lammerding.

In the process, G-actin detaches from MKL1 and is converted into another protein called F-actin, which exposes the code for MLK1’s entry into the nucleus. Once inside the nucleus, MLK1 binds to another protein to activate genes for reinforcing the cell’s structure.

In the experimental mice, G-actin failed to consistently convert to F-actin. As a result, G-actin often remained bound to MKL1, blocking its entry code. The culprit behind this disruption was a protein called emerin, which triggers processes that sequester MLK1 in the nucleus and is normally held in place at the nucleus’ inner membrane by lamins A and C. When the lamins were missing or mutated, emerin floated away from the inner nuclear membrane, and MLK1 was quickly exported out of the nucleus. Without MLK1 in the nucleus, the genes that trigger the cell’s adaptations to mechanical stress, including the conversion of G-actin to F-actin, remain inactive, leading to the heart disease found in many laminopathies.

 With this knowledge, researchers may eventually create “drugs that modulate and target downstream consequences by stimulating the impaired pathway and turning it on,” Lammerding added.

Chin Yee Ho, a Weill Institute postdoctoral fellow, was the paper’s lead author. Co-authors include Diana Jaalouk, Weill Institute visiting scientist from the American University of Beirut, Lebanon, and Maria Vartiainen, a researcher at the University of Helsinki.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tumor-suppressing Gene Lends Insight to Cancer Treatment
Researchers have found that delicate replication process derails if a gene named PTEN has mutated or is absent.
Tuesday, July 14, 2015
$5.5M NSF Grant Aims to Improve Rice Crops with Genome Editing
Researchers to precisely target, cut, remove and replace DNA in a living cell to improve rice.
Friday, May 08, 2015
A ‘STAR’ is Born: Engineers Devise Genetic 'On' Switch
A new “on” switch to control gene expression has been developed by Cornell scientists.
Tuesday, February 03, 2015
Computer Model Reveals Cancer's Energy Source
Findings focused on the energy-making process in cancer cells known as the Warburg Effect.
Tuesday, August 19, 2014
For Cancer Patients, Sugar-Coated Cells are Deadly
Paszek’s lab will focus on developing high-resolution microscopy to further study cell membrane-related cancer mechanisms.
Friday, June 27, 2014
Shark, Human Proteins are Surprisingly Similar
Despite widespread fascination with sharks, the world’s oldest ocean predators have long been a genetic mystery.
Friday, December 06, 2013
Gold-Plated Nano-Bits Find, Destroy Cancer Cells
Scientists have merged tiny gold and iron oxide particles, then added antibody guides to steer them through the bloodstream toward colorectal cancer cells.
Monday, October 21, 2013
Using Genes to Rescue Animal and Plants from Extinction
With estimates of losing 15 to 40 percent of the world’s species over the next four decades researchers whether science should employ genetic engineering to the rescue.
Friday, September 27, 2013
Dad’s Genes Build Placentas
Though placentas support the fetus and mother, it turns out that the organ grows according to blueprints from dad.
Monday, August 12, 2013
Physicists Tease out Twisted Torques of DNA
Like an impossibly twisted telephone cord, DNA, the molecule that encodes genetic information, also often finds itself twisted into coils.
Monday, July 01, 2013
Expelled DNA that Traps Toxins May Backfire in Obese
The body’s most powerful immune cells may have a radical way of catching their prey that could backfire on people who are overweight.
Wednesday, June 19, 2013
Genetic Switches Play Big Role in Human Evolution
Study offers further proof that the divergence of humans from chimpanzees was profoundly influenced by mutations to DNA sequences.
Wednesday, June 12, 2013
Genome Offers Clues to Amphibian-Killing Fungus
A fungus that has decimated amphibians globally is much older than previously thought.
Thursday, May 30, 2013
Scientists Develop World's Smallest Drug Deliverer
Cornell researchers have created a pore in “Cornell Dots” – brightly glowing nanoparticles nicknamed C-Dots – that can carry medicine.
Friday, April 12, 2013
DNA Editor Named Runner-up Breakthrough of 2012
A discovery that allows life scientists to precisely edit genomes for everything from crop and livestock improvement to human gene and cell therapy was named runner-up for Science magazine's 2012 Breakthrough of the Year.
Wednesday, February 27, 2013
Scientific News
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos