Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

microRNA Cooperation Mutes Breast Cancer Oncogenes

Published: Friday, May 10, 2013
Last Updated: Friday, May 10, 2013
Bookmark and Share
Turning up a few microRNAs a little may offer as much anti-breast-cancer activity as turning up one microRNA a lot – and without the unwanted side effects.

It’s a bit like the classic thought experiment known as the “tumor problem” formulated by Karl Dunker in 1945 and used frequently in the problem-solving literature: Imagine a person suffers from a malignant tumor in the center of her body. Radiation strong enough to kill the tumor kills any healthy tissue through which it passes. Without operating or killing healthy tissue, how can a doctor use radiation to kill the tumor?

The answer is to target the tumor from many angles – many weak rays of radiation pass harmlessly through healthy tissue, but their combined power at the point of the tumor is enough to kill it.

In the present study, CU Cancer Center investigators used “weak” induction of multiple microRNAs that combined from many angles to regulate the known breast cancer oncogenes erbB2/erbB3 (the “tumor”) without regulating non-target genes (the “healthy tissue”).

“Imagine you have a microRNA that regulates genes A and B. Then you have another microRNA that regulates genes B and C. You amplify each microRNA to a degree that doesn’t effect gene A or C, but their combined effect regulates gene B,” says Bolin Liu, MD, assistant professor in the Department of Pathology at the University of Colorado School of Medicine.

microRNA is an attractive target in cancer therapy – more microRNA can lead to less gene expression, turning down or off the oncogenes that cause cancer. However, to get the desired effect on gene expression frequently requires enhancing microRNA expression 100- or 1,000-fold (or more). And the induced microRNA likely has other genetic targets – it will turn down other genes as well as the oncogene, sometimes with unfortunate consequences.

“The current study showed that two microRNAs enhanced only 3-to-6 times their natural expression could cooperate to regulate an oncogene that had previously only been affected by a microRNA enhanced by many, many times this amount,” Liu says.

Specifically, the group’s work shows that no one alone, but any two of the three microRNAs that regulate erbB2/erbB3 expression can affect the levels of proteins produced by the genes. These are miR-125a, miR-15b, and miR-205, which act in concert to regulate the expression of erbB2/erbB3, which are cancer-causing products of the oncogenes.

But in general, the group’s novel technique could have implications far past erbB2/erbB3, allowing researchers and eventually doctors to mute the genes they want to mute without also dampening the expression of genes regulated by only one or only the other microRNA partner.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Epigenomic Abnormalities Predict Patient Survival in Non-Hodgkins Lymphoma
University of Colorado Cancer Center looks into how epigenetics could be used to control cancer.
Wednesday, January 16, 2013
Scientific News
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Modified Microalgae Converts Sunlight into Valuable Medicine
A special type of microalgae can soon produce valuable chemicals such as cancer treatment drugs and much more just by harnessing energy from the sun.
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!