Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Gene Identified Responsible for Disorders of Bones and Connective Tissue

Published: Monday, May 13, 2013
Last Updated: Monday, May 13, 2013
Bookmark and Share
Researchers have identified a gene that when mutated is responsible for a spectrum of disorder.

This finding opens new avenues for research into the diagnosis and treatment of these previously incurable diseases.

Spondyloepimetaphyseal dysplasia with joint laxity, type I or SEMD-JL1 is a disorder of the skeleton resulting in short stature and spinal problems starting from birth, and worsening with age. The disease is also known as SEMD Beighton type.

In order to find the gene responsible for the disorder, Dr. Ikegawa and his team examined the entire coding sequence of the genome of 7 individuals suffering from SEMD-JL1 using next-generation sequencing technology.

The researchers found that the study subjects all had mutations that resulted in significant loss of function of the gene B3GALT6, known to be involved in the biosynthesis of an important component of connective tissue.

To the reseachers’ surprise, mutations in B3GALT6 were also found in patients suffering from a disorder of the connective tissue called Ehlers-Danlos syndrome progeroid type.

The researchers show that a deficiency in the B3GALT6 enzyme results in a spectrum of disorders affecting various tissues, including the skin, bones, cartilage, tendons and ligaments. Their results indicate that B3GALT6 is essential for the development and the maintenance of these tissues.

B3GALT6 is known to encode for an enzyme involved in the biosynthesis of the glucosaminoglycan (GAG) linker region.

“The GAG linker region is key for GAG biosynthesis and proteoglycan metabolism,” explains Dr Ikegawa, “and proteoglycans are important because they are a major component of the matrix of connective tissue in animals.”

“Our findings show that mutations in B3GALT6 cause a spectrum of disorders that were previously thought to belong to different families of diseases — some were thought to be skeletal dysplasia and others connective tissue disorders,” explain the authors.

“More clinical, genetic and biological studies are needed to understand the pathological mechanism of the diseases and the role of GAG metabolism and function,” they conclude.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
Thursday, July 30, 2015
Insights Into A Rare Genetic Disease
Study shows mutation in NGLY1 gene is linked to a genetic disorder with severe consequences.
Tuesday, January 20, 2015
RIKEN: Genome-wide Study Reveals 3 New Susceptibility Loci for Adult Asthma in Japanese Population
The findings appear in Nature Genetics and derive from a genome-wide study of 4836 Japanese individuals.
Monday, August 01, 2011
Genetic Variant Linked to Development of Liver Cancer in Hepatitis C Virus Carriers
The research group conduct a genome-wide study to identify risk factors connecting HVC and HCC.
Monday, July 04, 2011
RIKEN: Mechanism for Stress-induced Epigenetic Inheritance Uncovered in New Study
Results highlight the role of the transcription factor dATF-2 in chromatin assembly, marking a major advance in understanding of non-Mendelian inheritance.
Friday, June 24, 2011
Discovery of DNA Silencing Mechanism Reveals How Plants Protect Their Genome
Researchers have clarified a key epigenetic mechanism by which an enzyme in the model plant Arabidopsis protects cells from harmful DNA elements.
Monday, May 16, 2011
Scientific News
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
Gene Drive Reversibility Introduces New Layer of Biosafety
Ability to introduce or reverse the spread of genetic traits through populations could one day improve pest management and disease control.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos