Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Hormone May Help Treat Diabetes

Published: Wednesday, May 15, 2013
Last Updated: Wednesday, May 15, 2013
Bookmark and Share
Betatrophin prompts cells in the pancreas to multiply and produce more insulin.

A hormone called betatrophin prompts cells in the pancreas to multiply and produce more insulin. The finding, in mice, may lead to new ways to prevent or slow the progression of diabetes.

Diabetes is a disorder in the use of glucose, a sugar that serves as fuel for the body. When blood glucose levels rise, beta cells in the pancreas normally make the hormone insulin, which signals cells to take sugar from the blood.

In type 1 diabetes, the body’s own immune system attacks and destroys beta cells. In type 2 diabetes, the most common form of diabetes, cells lose their sensitivity to insulin, and beta cells can’t make enough insulin to keep blood sugar levels in check.

Over time, high levels of glucose can lead to heart disease, stroke, blindness and other problems.

Insulin-secreting beta cells comprise just 1% of a normal pancreas and normally divide very slowly.

Drs. Peng Yi, Douglas A. Melton and colleagues at the Harvard Stem Cell Institute reasoned that, while the causes for type 1 and type 2 diabetes differ, treatments that encourage beta cells to multiply could benefit patients with both types of diabetes.

Previous studies found that, when insulin signaling is blocked in tissues such as the liver, beta cells multiply and increase insulin secretion.

The researchers therefore used a molecule that binds the insulin receptor to interfere with insulin signaling. Their work, funded in part by NIH’s National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), was published on May 9, 2013, in Cell.

The scientists confirmed that blocking the insulin receptor caused insulin resistance and stimulated beta cell proliferation in mice. When they analyzed gene expression, they identified a gene that was upregulated after the treatment by about 4-fold in liver and 3-fold in white fat. The gene produces a protein that the scientists dubbed betatrophin.

The gene for an equivalent human protein is very similar. While betatrophin is expressed in the liver and fat of mice, in people it’s primarily expressed in the liver. The hormone is secreted into the bloodstream to signal beta cells in the pancreas to reproduce.

To test the effects of betatrophin in the body, the researchers injected the betatrophin gene into mouse livers.

After 8 days, beta cells in these mice filled 3 times more space in the pancreas than in control-injected mice, and pancreas insulin content doubled. The mice also had a lower fasting glucose level and improved glucose tolerance compared to control mice.

The researchers now aim to make betatrophin protein and test it directly by injection. They are working with 2 biotech and pharmaceutical companies to move the newly discovered hormone toward the clinic.

“If this could be used in people,” Melton says, “it could eventually mean that instead of taking insulin injections 3 times a day, you might take an injection of this hormone once a week or once a month, or in the best case maybe even once a year.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Friday, November 13, 2015
NIH Researchers Link Single Gene Variation to Obesity
Variation in the BDNF gene may affect brain’s regulation of appetite, study suggests.
Saturday, October 31, 2015
Researchers Identify Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Saturday, October 31, 2015
Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Friday, October 23, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Gene Therapy Staves Off Blindness from Retinitis Pigmentosa in Canine Model
NIH-funded study suggests therapeutic window may extend to later-stage disease.
Tuesday, October 20, 2015
Scientists Develop Genetic Blueprint of Inner Ear Cell Development
Two studies in mice use new technique to provide insight into cell development critical for hearing, balance.
Saturday, October 17, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Thursday, October 01, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
Scientific News
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos