Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Preclinical Tests Shows Agent Stops “Slippery” Proteins from Binding, Causing Ewing Sarcoma

Published: Friday, May 17, 2013
Last Updated: Friday, May 17, 2013
Bookmark and Share
Some tumors regressed to the point that cancer cells could not be detected microscopically.

Their study, which will be presented at the 2013 annual meeting of the American Society of Clinical Oncology, provides pre-clinical evidence necessary to initiate a clinical trial.

“This agent has the potential to be more effective, and considerably less toxic, than the current drugs now used to treat this rare cancer,” says the study’s lead investigator, Jeffrey Toretsky, MD, a pediatric oncologist and researcher at Georgetown Lombardi, part of Georgetown University Medical Center.

The agent, (S)-YK-4-279, was developed by Toretsky and his colleagues, including scientists in GUMC’s Center for Drug Discovery. Based on early promising studies of the compound, Toretsky established TDP Biotherapeutics, Inc. to manufacture the agent. Toretsky says TDP Biotherapeutics, Inc. is preparing a U.S. Food and Drug Administration (FDA) investigational new drug (IND) application for (S)-YK-4-279 so that a clinical trial can be initiated.

In the United States, about 500 children and young adults are diagnosed with the cancer annually, and they are treated with a combination of five different chemotherapy drugs. Between 60 to 70 percent of patients survive more than five years, but with many late effects from therapy. Few treatments lead to a cure for patients whose cancer progresses, Toretsky says.

Ewing sarcoma is caused by the exchange of DNA between two chromosomes. The resulting EWSR1-FLI1 gene produces a fusion protein, EWS-FLI1, responsible for development of the cancer. In 2006, Toretsky and his team discovered that the fusion protein binds to another protein, RNA helicase A (RHA), which is important for cancer progression.

The (S)-YK-4-279 agent they developed is considered unique because it stops the two proteins — EWS-FLI1 and RHA — from interacting. “Scientists have long thought it impossible to block protein-protein interaction because the surface of these proteins are too slippery and flexible for a drug to bind to,” Toretsky says. “Our agent challenges that conventional thinking.”

To test the agent, the researchers developed a rat model of Ewing sarcoma and figured out how to deliver a continuous drip of the drug to the animals. “We found that cancer cells need a continuous exposure at low concentrations for the drug to be of maximum effectiveness,” Toretsky says. “And this strategy works extremely well in these animal models. The drug appears to be very successful.”

Toretsky is an inventor on a patent application that has been filed by Georgetown University related to the technology described. He has an ownership interest in TDP Biotherapeutics, to which the technology has been licensed for research and development.

The FDA has granted the TDP Biotherapeutics company orphan drug status (Orphan Drug Act), which qualifies the sponsor of a product to receive tax credit and marketing incentives. The study was funded by a grant from the National Cancer Institute (RC4 CA156509) issued under the American Recovery and Reinvestment Act (R01CA138212).

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos