Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Scientists Find Link Between Allergic and Autoimmune Diseases in Mouse Study

Published: Tuesday, June 04, 2013
Last Updated: Tuesday, June 04, 2013
Bookmark and Share
Discovery of gene may help scientists better understand diseases such as MS, Crohn’s disease, celiac disease and type 1 diabetes.

Scientists at the National Institutes of Health, and their colleagues, have discovered that a gene called BACH2 may play a central role in the development of diverse allergic and autoimmune diseases, such as multiple sclerosis, asthma, Crohn's disease, celiac disease, and type-1 diabetes.

In autoimmune diseases, the immune system attacks normal cells and tissues in the body that are generally recognized as “self” and do not normally trigger immune responses. Autoimmunity can occur in infectious diseases and cancer.

The results of previous research had shown that people with minor variations in the BACH2 gene often develop allergic or autoimmune diseases, and that a common factor in these diseases is a compromised immune system.

In this study in mice, the Bach2 gene was found to be a critical regulator of the immune system’s reactivity.

The study, headed by researchers at the National Cancer Institute (NCI) and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), both part of NIH, and their colleagues appeared online in Nature, June 2, 2013.

The finding that a single component of the immune system plays such a broad role in regulating immune function may explain why people with allergic and autoimmune diseases commonly have alterations in the BACH2 gene, said NCI researcher Rahul Roychoudhuri, M.D. "This may be the first step in developing novel therapies for these disorders."

Studies known as genome-wide association studies, which analyze genetic variants among people to determine whether specific variants are associated with particular traits, were critical to the discovery.

These studies showed that DNA from patients with diverse autoimmune disorders often had minor alterations in the BACH2 gene, which laid the foundation for this research.

“What was exciting was the opportunity to apply cutting-edge technology permitted by the completion of the Human Genome Project,” said NIAMS scientific director John O’Shea, M.D.

O’Shea continued, “Using genome-wide approaches we were able to map the action of Bach2 across all genes. This enabled us to gain a clearer understanding of Bach2’s key role in the immune system.”

The immune system is comprised of a variety of cell types that must act in unison to maintain a healthy balance. White blood cells called CD4+T cells play a dual role within the immune system.

Some CD4+T cells activate immune responses, whereas others, called regulatory T cells, function in the opposite direction by constraining immune responses.

This duality is important because uncontrolled immune responses may result in immune system attacks against the body’s own cells and tissues, which occurs in allergic and autoimmune diseases.

One of the hallmarks of uncontrolled immune responses is excessive tissue inflammation. Although tissue inflammation is a normal part of immune responses, excessive inflammation can lead to tissue and organ damage and may be potentially lethal.

How CD4+T cells become either activating/inflammatory or regulatory is not well understood, according to the researchers.

“We found that the Bach2 gene played a key role in regulating the switch between inflammatory and regulatory cells in mice,” said NIAMS researcher Kiyoshi Hirahara, M.D. “The loss of the Bach2 gene in CD4+ T cells caused them to become inflammatory, even in situations that would normally result in the formation of protective regulatory cells.”

The team found that if mice lacked the Bach2 gene their cells became inflammatory and the mice died of autoimmune diseases within the first few months of life.

When they re-inserted Bach2 (using gene therapy) into Bach2-deficient cells, their ability to produce regulatory cells was restored.

"Although genes have been found that play specific roles in either inflammatory cells or regulatory cells, Bach2 regulates the choice between the two cell types, resulting in its critical role in maintaining the immune system’s healthy balance," said NCI principal investigator, Nicholas P. Restifo, M.D., "It’s apt that the gene shares its name with the famous composer Bach, since it orchestrates many components of the immune response, which, like the diverse instruments of an orchestra, must act in unison to achieve symphonic harmony."

Restifo suggests that these findings have implications for cancer as well, since cancers co-opt regulatory T cells to prevent their own destruction by antitumor immune responses.

He and his colleagues are now working toward manipulating the activity of the Bach2 gene, with the goal of developing a new cancer immunotherapy.

Also, as this study was in mice, it must be replicated in humans before its findings can be applied in a clinical setting.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Predicting Effective Drug Combinations For TB
Researchers analyzed gene regulatory networks to explain the effectiveness of an experimental drug combination against drug-resistant tuberculosis bacteria.
Wednesday, June 15, 2016
Genomic Data Commons Launched
Part of the National Cancer Moonshot, the GDC will centralize and standardize accessible data.
Tuesday, June 07, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
Decoding Ties Between Vascular Disease, Alzheimer’s
NIH consortium uses big data, team science to uncover complex interplay of factors.
Tuesday, March 15, 2016
Researchers Find Link Between Death of Tumor-Support Cells and Cancer Metastasis
Researchers at NIH have found that the lifespan of supportive cells in a tumor may control the spread of cancer.
Tuesday, February 23, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
Targeting BRAF Mutations in Thyroid Cancer
Treating metastatic thyroid cancer patients harboring a BRAF mutation with vemurafenib showed anti-tumor activity in a third of patients.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
Cancer Related Immune Response Genes Uncovered
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
Deciphering Inactive X Chromosomes
Untangling the Barr body of inactive X chromosomes valuable for understanding chromosome structure and gene expression.
Micro Disease-Detecting Sensor Created
Researchers at McMaster University have created a microscopic disease-detecting sensor that can turn on to detect trace amounts of substances.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!